We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. We study a structure and conservation laws of microwave ME near fields. We show that there exist sources of microwave ME near fields-the ME particles. These particles are represented by small quasi-two-dimensional ferrite disks with magnetic-dipolar-oscillation spectra. The near fields originating from such particles are characterized by topologically distinctive power-flow vortices, nonzero helicity, and a torsion degree of freedom. The paper consists of two main parts. In the first one, we give a theoretical background of properties of the electric and magnetic fields inside and outside of a ferrite particle with magnetic-dipolar-oscillation spectra resulting in the appearance of microwave ME near fields. In the second main part, we represent numerical and experimental studies of the microwave ME near fields and their interactions with matter. Based on the obtained properties of the ME near fields, we discuss possibilities for effective microwave sensing of natural and artificial chiral structures.
Under the influence of the material environment, electromagnetic fields in the near-field regime exhibit quite different nature from those in the far-field free space. A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known as a polariton. Such a state is the result of the mixing of a photon with an excitation of a material. The most discussed types of polaritons are phonon-polaritons, exciton-polaritons, and surface plasmon-polaritons. Recently, it was shown that in microwaves strong magnon-photon coupling can be achieved due to magnetic-dipolar-mode (MDM) vortices in small thin-film ferrite disks. These coupled states can be specified as MDM-vortex polaritons. In this paper we study properties of MDM-vortex polaritons. We show that MDM-vortex polaritons are characterized by helicity behaviors. For the observed frequency splits of MDM resonances there are differenttype helicities. In the split-resonance states one has or localization, or cloaking of electromagnetic fields. We analyze numerically a variety of the field topological structures of MDM-vortex polaritons and give theoretical insights into the possible origin of such topologically distinctive states. The shown properties of MDM-vortex polaritons can be useful for realization of novel microwave metamaterial structures and near-field sensing applications.
The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties. PACS number(s): 76.50.+g; 78.70.Gq; 87.50.S
Magnetic-dipolar modes (MDMs) in a quasi-2D ferrite disk are microwave energyeigenstate oscillations with topologically distinct structures of rotating fields and unidirectional power-flow circulations. At the first glance, this might seem to violate the law of conservation of an angular momentum, since the microwave structure with an embedded ferrite sample is mechanically fixed. However, an angular momentum is seen to be conserved if topological properties of electromagnetic fields in the entire microwave structure are taken into account. In this paper we show that due to the topological action of the azimuthally unidirectional transport of energy in a MDMresonance ferrite sample there exists the opposite topological reaction on a metal screen placed near this sample. We call this effect topological Lenz's effect. The topological Lenz's law is applied to opposite topological charges: one in a ferrite sample and another on a metal screen. The MDM-originated near fields -the magnetoelectric (ME) fields -induce helical surface electric currents and effective charges on a metal. The fields formed by these currents and charges will oppose their cause. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.