Three strains of Pepino mosaic virus (PepMV) found in the US have been cloned and sequenced by RT-PCR using total RNA from infected tissue as template, and degenerate potexvirus- and PepMV species- and isolate-specific primers. Despite limited source material, the complete nucleotide sequences (6413 and 6410 nts, respectively) of two isolates, PepMV-US1 and PepMV-US2, were obtained and analyzed using total RNA from less than 0.2 g of a pooled infected tomato leaf sample from Arizona. Sequence of the 3'-end of the third isolate from infected fresh tomato fruits from Maryland (PepMV-US3) was also determined. The genome organizations of PepMV-US1 and US2 were typical of the genus Potexvirus, with the following reading frame order: ORF 1, encoding a putative replicase; ORFs 2-4, triple gene block proteins (TGBp) 1-3; and ORF 5, coat protein (CP). Gene-for-gene comparison between PepMV-US1 and US2 revealed the following amino acid identities: 91% in replicase, 89% in TGBp1, 92% in TGBp2, 85% in TGBp3, and 93% in the CP; with an overall nucleotide identity of 86%. Nucleotide sequence comparisons between US1 and US2 and the European isolates showed only 79-82% identity, whereas the identity among the European isolates was over 99%. Sequence comparisons and phylogenetic analysis indicate that PepMV-US1 and US2 are distinctly different from the European isolates, while the CP of PepMV-US3 is nearly identical to the European isolates. The results presented also suggest that TGBp1 and TGBp3 are more suitable than either the replicase or coat protein gene products for discriminating PepMV isolates.
The family Potyviridae includes plant viruses with single-stranded, positive-sense RNA genomes of 8–11 kb and flexuous filamentous particles 650–950 nm long and 11–20 nm wide. Genera in the family are distinguished by the host range, genomic features and phylogeny of the member viruses. Most genomes are monopartite, but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Potyviridae, which is available at ictv.global/report/potyviridae.
A panel of monoclonal antibodies (MAbs) generated against an admixture of 12 potyvirus isolates was used to compare and differentiate diverse potyviruses. Both native and denatured virions of strains of bean yellow mosaic (BYMV), potato virus Y, tobacco etch, pea seed-borne mosaic, iris severe mosaic, iris mild mosaic and asparagus virus-1 potyviruses were used as immunogen and as antigen for screening of the hybridoma cell lines. Thirty cell lines secreting potyvirus-specific antibodies reactive in indirect antigen-coated plate (ACP-) ELISA were selected lbr detailed analysis. All 30 MAbs reacted with at least one strain of BYMV; 11 MAbs reacted with between one and eight of the nine BYMV strains and an additional three MAbs reacted only with isolates within the BYMV subgroup (BYMV, pea mosaic virus and clover yellow vein virus). The remaining 16 MAbs reacted with a BYMV isolate and with at least one of the other 43 potyvirus isolates tested. MAb PTY 1 reacted with all 55 potyvirus isolates tested (representing at least 33 different and distinct aphid-transmissible potyviruses). The potyvirus cross-reactive MAbs generally gave higher reactivity values in ACP-ELISA with dissociated virus than with polyclonal antibody-trapped intact virions in triple antibody sandwich ELISA (i.e. were cryptotopespecific). The BYMV strain-and virus-specific MAbs reacted strongly with both types of antigens (i.e. were metatope-specific). At least 25 distinct epitopes (12 cryptotopes and 13 metatopes) could be identified from the MAb-antigen reactivity patterns. The distribution of these epitopes between virus isolates can be used to detect and differentiate potyviruses in infected plant extracts and to examine virus architectures. Some of these epitopes are shared by potyvirus isolates not previously shown to be serologically related. The broad spectrum-reacting MAb PTY 1 recognizes a cryptotope conserved on all of the aphid-transmissible potyviruses examined and should be a valuable tool for the detection and assay of these potyviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.