The aim and objectives of the study are as follows: (i) to implement automated patch-based classification of hand X-ray images using modified pre-trained convolutional neural network (CNN) models; (ii) to develop a customized CNN model for automated feature extraction and classification of hand X-ray images and to compare the performance of customized CNN models with non-linear and linear kernels; (iii) to construct the hand crafted feature fusion (SIFT+ Customized CNN features) and categorize the normal and RA using Machine Learning classifiers. The model was trained on 75 images (10,000 patches) of hand radiographs and tested using 25 images (500 patches) that were not included in the training set. The accuracy of the modified pre-trained model GoogLeNet was 89% and the proposed custom model three achieved an accuracy of 95%. The sensitivity and specificity of GoogLeNet were 84% and 90% respectively. The custom model three attained the sensitivity and specificity as 95% and 94% respectively. Furthermore, when compared to the features extracted (SIFT + CNN) from the customized models, the custom3 model outperformed well for the classification of RA compared to ML classifiers. Thus a custom CNN-based computer-aided diagnostic tool can be used as an effective method for the detection of RA.
The study aims to develop a computerized hybrid model using artificial intelligence (AI) for the detection of rheumatoid arthritis (RA) from hand radiographs. The objectives of the study include (i) segmentation of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints using the deep learning (DL) method, and features are extracted using handcrafted feature extraction technique (ii) classification of RA and non-RA participants is performed using machine learning (ML) techniques. In the proposed study, the hand radiographs are resized to [Formula: see text] pixels and pre-processed using the various image processing techniques such as sharpening, median filtering, and adaptive histogram equalization. The segmentation of the finger joints is carried out using the U-Net model, and the segmented binary image is converted to gray scale image using the subtraction method. The features are extracted using the Harris feature extractor, and classification of the proposed work is performed using Random Forest and Adaboost ML classifiers. The study included 50 RA patients and 50 normal subjects for the evaluation of RA. Data augmentation is performed to increase the number of images for U-Net segmentation technique. For the classification of RA and healthy subjects, the Random Forest classifier obtained an accuracy of 91.25% whereas the Adaboost classifier had an accuracy of 90%. Thus, the hybrid model using a Random Forest classifier can be used as an effective system for the diagnosis of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.