Inertial confinement fusion, frequently referred to as ICF, inertial fusion, or laser fusion, is a means of producing energy by imploding small hollow microspheres containing thermonuclear fusion fuel. Polymer microspheres, which are used as fuel containers, can be produced by solution-based micro-encapsulation technique better known as density-matched emulsion technique. The specifications of these microspheres are very rigorous, and various aspects of the emulsion hydrodynamics associated with their production are important in controlling the final product. This paper describes about the optimization of various parameters associated with density-matched emulsion method in order to improve the surface smoothness, wall thickness uniformity and sphericity of hollow polymer microspheres. These polymer microshells have been successfully fabricated in our lab, with 3-30 µm wall thickness and 50-1600 µm diameters. The sphericity and wall thickness uniformity are better than 99%. Elimination of vacuoles and high yield rate has been achieved by adopting the step-wise heating of W 1 /O/W 2 emulsion for solvent removal.
An improved version of a Maw bank circuit has been developed using 2N5551/2N5550 transistots as switching elements in avalanche mode which provides a negative pulse of about 4 kV amplitude and <1 ns rise time. The circuit has about 14 ns delay and 4 1 ns jitter.
Conventionally, low-pressure ͑Ͻ1 Torr͒ electrical discharges are used for material processing and thin-film deposition. These schemes suffer mainly due to the high cost of equipment and the complexity of operations. The atmospheric pressure glow discharge plasma is developed using a threaded styled electrode in different configurations, and these reactors are used to produce plasma polymerized coatings, required on plane substrates as self-supporting films to obtain membranes for blocking holes in cavities, and on microballoon targets, which are used as fuel containers for inertial confinement fusion, to avoid DT gas permeation. Helium gas is used as the supporting gas for formation and stabilization of atmospheric pressure glow discharge plasma reactors. Ethylene and acetylene gases are used as monomers to produce plasma polymerized hydrocarbon films. These films are characterized using scanning electron microscopy. Plasma polymerized coatings of thickness 100 nm-10 m with a smooth surface finish ͑rmsϽ100 nm͒ are deposited successfully. The surface finish is further improved using a postdischarge configuration. Preliminary results are very encouraging but further progress is to be made in this area. We are also planning to extend this technique for C:H coating of microballoons, which are used as fuel containers in inertial confinement fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.