In this work a very simple continuously tunable laser based on an erbium ring cavity and a silicon wafer is presented. This laser can be tuned with very fine steps, which is a compulsory characteristic for gas sensing applications. Moreover the laser is free of mode hopping within a spectral range sufficiently wide to match one of the ro-vibrational lines of a target molecule. Here the proposed laser reached, at ~1530 nm, a continuous tuning range of around 950 pm (>100 GHz) before mode hopping occurred, when a silicon wafer of 355 μm thickness was used. Additionally, the laser can be finely tuned with small tuning steps of <12 pm, achieving a resolution of 84.6 pm °C−1 and by using a thermo-electric cooler (TEC) the laser showed a high wavelength stability over time. These tuning characteristics are sufficient to detect molecules such as acetylene in which the mean separation between two ro-vibrational lines is around 600 pm. Finally, it is shown that the tuning range can be modified by using wafers with different thickness.
Abstract:In this work a hybrid gas sensor based on a tunable fiber laser and a correlation spectroscopy technique is presented. The laser is tuned by varying the temperature of a bulk silicon wafer of 85 µm thickness and, once the desired wavelength is reached the line, is locked by keeping fixed its temperature. According to experimental results the wafer temperature variation was in the order of 0.02 K, which induced an estimated wavelength deviation of 0.12 pm, which satisfies the high wavelength position accuracy required for gas sensing applications. Additionally, it is shown that errors due to laser intensity fluctuations can be minimized by implementing a simple dual path correlation spectroscopy stage. As a proof of the suitability of our tunable fiber laser for gas sensing applications, a C 2 H 2 sensor was implemented. By using a 10 cm gas cell at atmospheric pressure, it was possible to detect concentrations from 0 to 20% with a sensitivity of 521 ppm and sub-minute time response. Moreover, the experimental measurements and simulated results have a high level of agreement. Finally, it is important to point out that, by using doped fiber with different characteristics, other wavelength emissions can be generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.