We report on photoluminescence and ultraviolet laser emission from ZnO pellets and thin films of ZnO. Laser emission from disordered polycrystalline thin films and pellets was observed in all directions. ZnO films were deposited on glass substrate at room temperature in various ambient gas pressures of oxygen using the pulsed laser deposition technique. The dependence of laser emission on the size of nanocrystallites observed at different pressures of ambient gas is discussed. Photoluminescence spectra depend on the stoichiometry and the microstructure of the film.
We report the synthesis of aluminum nanoparticles using pulsed laser ablation in water confined plasma. Nanoparticles have spherical shape and size distribution depends on laser fluence. Strong blue photoluminescence peaks at 405 nm (3.06 eV) and 430 nm (2.89 eV) due to oxygen deficient defects (F, F+, and F++ centers) is reported with different UV excitations. A comparative study of plasma in deionized water and air ambient reveals enhanced line broadening and higher electron density in water confined plasma compared to that in air, in agreement with radiative recombination model. The temporal dependence of spectral radiant energy density of plasma is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.