S U M M A R YA novel approach based on the concept of super self-adapting back propagation (SSABP) neural network has been developed for classifying lithofacies boundaries from well log data. The SSABP learning paradigm has been applied to constrain the lithofacies boundaries by parameterzing three sets of well log data, that is, density, neutron porosity and gamma ray obtained from the German Continental Deep Drilling Project (KTB). A multilayer perceptron (MLP) neural networks model was generated in a supervised feed-forward mode for training the published core sample data. A total of 351 pairs of input and output examples were used for self-adaptive network learning and weight and bias values were appropriately updated during each epoch according to the gradient-descent momentum scheme. The actual data analysis suggests that the SSABP network is able to emulate the pattern of all three sets of KTB data and identify lithofacies boundaries correctly. The comparisons of the maximum likelihood geological sections with the available geological information and the existing geophysical findings over the KTB area suggest that, in addition to the known main lithofacies boundaries units, namely paragneisses, metabasites and heterogeneous series containing partly calc-silicate bearing paragneisses-metabasites and alternations of former volcano-sedimentary sequences, the SSABP neural network technique resolves more detailed finer structures embedded in bigger units at certain depths over the KTB region which seems to be of some geological significance. The efficacy of the method and stability of results was also tested in presence of different levels of coloured noise. The test results suggest that the designed network topology is considerably unwavering for up to 20 per cent correlated noise; however, adding more noise (∼50 per cent or more) degrades the results. Our analyses demonstrate that the SSABP based approach renders a robust means for the classification of complex lithofacies successions from the KTB borehole log data and thus may provide useful guide/information for understanding the crustal inhomogeneity and structural discontinuity in many other regions.
Abstract. Koyna region is well-known for its triggered seismic activities since the hazardous earthquake of M = 6.3 occurred around the Koyna reservoir on 10 December 1967. Understanding the shallow distribution of resistivity pattern in such a seismically critical area is vital for mapping faults, fractures and lineaments. However, deducing true resistivity distribution from the apparent resistivity data lacks precise information due to intrinsic non-linearity in the data structures. Here we present a new technique based on the Bayesian neural network (BNN) theory using the concept of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) simulation scheme. The new method is applied to invert one and two-dimensional Direct Current (DC) vertical electrical sounding (VES) data acquired around the Koyna region in India. Prior to apply the method on actual resistivity data, the new method was tested for simulating synthetic signal. In this approach the objective/cost function is optimized following the Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) sampling based algorithm and each trajectory was updated by approximating the Hamiltonian differential equations through a leapfrog discretization scheme. The stability of the new inversion technique was tested in presence of correlated red noise and uncertainty of the result was estimated using the BNN code. The estimated true resistivity distribution was compared with the results of singular value decomposition (SVD)-based conventional resistivity inversion results. Comparative results based on the HMC-based Bayesian Neural Network are in good agreement with the existing model results, however in some cases, it also provides more detail and precise results, which appears to be justified with local geological and structural deCorrespondence to: S. Maiti (saumen maiti2002@yahoo.co.in) tails. The new BNN approach based on HMC is faster and proved to be a promising inversion scheme to interpret complex and non-linear resistivity problems. The HMC-based BNN results are quite useful for the interpretation of fractures and lineaments in seismically active region.
To understand the phenomenon of frequent reversals of axial geocentric dipole fields it is essential to understand the spectral structure of geomagnetic reversal series and search for possible exogenetic (cosmic) factors associated with its dynamic behaviour. A scheme of Walsh spectrum analysis (which is more efficient and appropriate for binary processes as compared to Fourier Spectrum Analysis and Maximum Entropy Method), has been applied, for the first time, to the available world‐wide paleomagnetic measurements during phanerozoic (last 570 million years). The results postulate long‐term cyclicity in magnetic stratigraphy with reversal periods of 285, 114, 64, 47 and 34 million years with distinct resolution. The similar analysis was further repeated by dividing the total record in two sub‐series. These results indicate mean periods of 71, 47 and 32‐ m.y. These peaks are statistically significant at 90% confidence level. These results, thus, question the widely accepted theory of randomness of geomagnetic reversal for long‐period sequence. Surprisingly, the maximum spectral power is found for the Cosmic year (285 m.y.) Term (period of complete revolution of solar system around the Milky way galactic centre). The other reversal periods correspond nicely with the solar system's periods of galactocentric radial motion, interaction of spiral density wave with galactic orbit and solar oscillation in and outside of orbital plane. Such a remarkable correlation and harmony between observed gravitational phenomena and terrestrial records of electromagnetic processes on the cosmic scale appear to be of fundamental importance in macroscopic physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.