Abstract.Measurements of Mars' rotational variations can be conducted via Earth-based radio tracking observations of the Mars Pathfinder lander during an extended mission. Two-way range measurements between an Earth tracking station and the lander will enable precise monitoring of the planet's orientation, allowing details of Mars' internal structure and global surface/atmosphere interactions to be determined. An analysis has been performed to investigate the accuracy with which key physical parameters of Mars can be determined using the Earth-based radio tracking measurements. Acquisition of such measurements over one Martian year should enable determination of Mars' polar moment of inertia to 1% or better, providing a strong constraint on radial density profiles (and hence on the iron content of the core and mantle) and on long-term variations of the obliquity, which influences the climate. Variations in Mars length of day and polar motion should also be detectable, and will yield information on the seasonal cycling of carbon dioxide between the atmosphere and the surface.
We have developed at LURE a multiwire proportional chamber with a spherical drift space. The wire chamber consists of two cathode planes, comprising 512 wires with a spacing of 1 mm, set on both sides of the anodic plane. The drift space, a gas filled region bounded by two spherically curved electrodes 144 mm apart, offers several advantages: high quantum efficiency, no parallax effect, equivalent spatial resolution in both directions, and smoothing of the pulsed structure of the synchrotron radiation. The gaseous mixture of argon-xenon (58%), ethane (40%), and ethyl alcohol (2%) is circulated in a closed circuit and is continuously purified. Ethyl alcohol, which avoids electrical discharges and sparks, is essential to operate the instrument at high counting rates (>300 000 events/s). The signal processing, which makes use of one amplifier per cathode wire and of fast priority encoders, determines both coordinates with a resolution of 1 mm and a dead time of 240 ns. Each encoded event is stored into a 512×512 16 bit CAMAC histogramming memory. The experiment is controlled by a PDP11/34 linked to a VAX by a direct memory access channel. A complete set of programs, which performs the data collection and an off line data reduction, is operational. The adaptation of madnes, a general software package which performs an on line data reduction, is under way. Data, collected on a lysozyme crystal to 3.4-Å resolution, give a reliability factor based on intensities of equivalent reflections of 4.7% without absorption corrections; the variation of the detector efficiency is <2.7%. A new version of the instrument is under realization. The position encoder, which uses flash ADCs and signal processors, has a resolution of 0.5 mm. Data are stored into a 1024×1024 16 bit VME histogramming memory linked to a micro VAX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.