Ultrasonic attenuation studies can be used to characterize material not only after production but during processing as well. The most important causes of ultrasonic attenuation in solids are electron-phonon, phonon-phonon interaction and that due to thermo elastic relaxation. The two dominant processes that will give rise to appreciable ultrasonic attenuation at higher temperature are the phonon-phonon interaction also known as Akhiezer loss and that due to thermo elastic relaxation are observed in calcium oxide crystal. At frequencies of ultrasonic range and at higher temperatures in solids, phonon-phonon interaction mechanism is dominating cause for attenuation. Ultrasonic attenuation due to phonon-phonon interaction (α/f2)p-p and thermo elastic relaxation (α/f2)th are evaluated in Calcium Oxide crystal up to an elevated temperature from 100 K - 1500 K along <100>, <110> and <111> crystallographic directions. Temperature dependence of ultrasonic attenuation along different crystallographic direction reveals some typical characteristic features
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.