Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and that regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here, we show that the expression and function of EZH2 in cancer cell lines is inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancers (6/16) and 66.7% of metastatic disease (22/33). We propose that genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.Polycomb Group Proteins, including EZH2, play a master regulatory role in controlling important cellular process such as maintaining stem cell pluripotency (1-3), cell proliferation (4,5), early embryogenesis (6), and X chromosome inactivation (7). EZH2 functions in a multiprotein complex called Polycomb Repressive Complex 2 (PRC2) which includes SUZ12 (Suppressor of Zeste 12) and EED (Embryonic Ectoderm Development) (8,9). The primary activity of the EZH2 protein complex is to tri-methylate histone H3 lysine 27 (H3K27) at target gene promoters, leading to epigenetic silencing (10,11). Mounting evidence suggests that #Address correspondence and requests for reprints to:
While recurrent gene fusions involving ETS family transcription factors are common in prostate cancer, their products are considered “undruggable” by conventional approaches. Recently, rare “targetable” gene fusions (involving the ALK kinase), have been identified in 1–5% of lung cancers1, suggesting that similar rare gene fusions may occur in other common epithelial cancers including prostate cancer. Here we employed paired-end transcriptome sequencing to screen ETS rearrangement negative prostate cancers for targetable gene fusions and identified the SLC45A3-BRAF and ESRP1-RAF1 gene fusions. Expression of SLC45A3-BRAF or ESRP1-RAF1 in prostate cells induced a neoplastic phenotype that was sensitive to RAF and MEK inhibitors. Screening a large cohort of patients, we found that although rare (1–2%), recurrent rearrangements in the RAF pathway tend to occur in advanced prostate cancers, gastric cancers, and melanoma. Taken together, our results emphasize the importance of RAF rearrangements in cancer, suggest that RAF and MEK inhibitors may be useful in a subset of gene fusion harboring solid tumors, and demonstrate that sequencing of tumor transcriptomes and genomes may lead to the identification of rare targetable fusions across cancer types.
Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. We performed (epi)genomic profiling of 138 IMs from 148 cancer-free patients, recruited through a 10-year prospective study. Compared with GCs, IMs exhibit low mutational burdens, recurrent mutations in certain tumor suppressors (FBXW7) but not others (TP53, ARID1A), chromosome 8q amplification, and shortened telomeres. Sequencing identified more IM patients with active Helicobacter pylori infection compared with histopathology (11%-27%). Several IMs exhibited hypermethylation at DNA methylation valleys; however, IMs generally lack intragenic hypomethylation signatures of advanced malignancy. IM patients with shortened telomeres and chromosomal alterations were associated with subsequent dysplasia or GC; conversely patients exhibiting normal-like epigenomic patterns were associated with regression.
Gastric cancer (GC) heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of GC (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histological subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2, and stage-wise accrual of cancer-associated fibroblast sub-populations marked by high INHBA and FAP co-expression. Single-cell comparisons between patient-derived organoids (PDOs) and primary tumors highlighted inter-and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-seq cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra-and inter-patient lineage-states across distinct GC subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.