The field of nutrition has evolved rapidly over the past century. Nutrition scientists and policy makers in the developed world have shifted the focus of their efforts from dealing with diseases of overt nutrient deficiency to a new paradigm aimed at coping with conditions of excess—calories, sedentary lifestyles and stress. Advances in nutrition science, technology and manufacturing have largely eradicated nutrient deficiency diseases, while simultaneously facing the growing challenges of obesity, non-communicable diseases and aging. Nutrition research has gone through a necessary evolution, starting with a reductionist approach, driven by an ambition to understand the mechanisms responsible for the effects of individual nutrients at the cellular and molecular levels. This approach has appropriately expanded in recent years to become more holistic with the aim of understanding the role of nutrition in the broader context of dietary patterns. Ultimately, this approach will culminate in a full understanding of the dietary landscape—a web of interactions between nutritional, dietary, social, behavioral and environmental factors—and how it impacts health maintenance and promotion.
The potential for all-trans-retinoic acid to regulate the metabolism of 3H-retinol and 3H-3,4-didehydroretinol was examined in cultured human epidermal keratinocytes. Confluent cultures were treated daily with medium containing 5% fetal bovine serum or the same medium supplemented with nanomolar concentrations of all-trans-retinoic acid for up to 3 d. During the last 24 of treatment, cells were incubated with 3H-retinol or 3H-3,4-didehydroretinol for 24 h (isotopic steady state) to label the endogenous retinoids. After the labeling period, one group of cells was harvested and another group was allowed to incubate for an additional 24 h in the absence of medium retinol for the determination of endogenous 3H-retinoid utilization. The 3H-retinoids present in cells were extracted and quantitated by reverse-phased high-pressure liquid chromatography. Keratinocytes treated with retinoic acid and labeled with 3H-retinol exhibited time- and concentration-dependent (i) increases in retinyl ester mass, (ii) increases in the rate of retinyl ester synthesis, (iii) decreases in retinyl ester utilization, and (iv) decreases in the cellular concentrations of retinoic and 3,4-didehydroretinoic acids. There was no effect of exogenous retinoic acid on its own metabolism. Cells labeled with 3H-3,4-didehydroretinol exhibited exclusive labeling of vitamin A2-related retinoids suggesting that the A1 to A2 conversion is not reversible. Treatment of cells with low nanomolar concentrations of retinoic acid decreased the utilization of 3,4-didehydroretinyl esters, decreased the production of 3,4-didehydroretinoic acid but had no effect on the synthesis of 3,4-didehydroretinol or its esters. The results demonstrate that keratinocytes respond to extracellular retinoic acid by decreasing endogenous production of active retinoids, sequestering extracellular substrate retinol as retinyl ester, and decreasing ester utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.