Cerium‐doped lutetium aluminum garnet (LuAG:Ce) and yttrium aluminum garnet (YAG:Ce) transparent ceramics of same dimension were fabricated and their optical and scintillation properties were studied. LuAG:Ce transparent ceramic showed higher light yield under UV and X‐ray excitation with respect to YAG:Ce transparent ceramic. YAG:Ce transparent ceramic showed higher light yield under gamma excitation and better energy resolution, which could be due to the considerable amount of slower emission (38.5%) in LuAG:Ce as well as lower optical transparency with respect to YAG:Ce ceramic.
For the first time, transparent La0.2Y1.8O3 nanostructured polycrystalline scintillators were fabricated by sintering nanoparticle powders at high temperatures and their scintillation properties are reported. La0.2Y1.8O3 is a host material that has never been investigated as scintillators for radiation detection. Our observations found that La0.2Y1.8O3 has an intense scintillation luminescence, a detection efficiency higher than that of YAG:Ce and a comparable energy resolution to NaI and CsI scintillators. In addition, La0.2Y1.8O3 is stable and has luminescence decay lifetime in the picosecond range which is favorable for radiation detection. The luminescence of La0.2Y1.8O3 has a large Stokes-shift and a large emission bandwidth, and the luminescence is highly temperature dependent. Different from most doped scintillators, the luminescence of La0.2Y1.8O3 is most likely from the self-trapped excitons. The discovery of La0.2Y1.8O3 scintillators opens a new door for the research of new materials for radiation detection.
Cerium doped Barium Fluoride (BaF 2-Ce) transparent ceramic was fabricated and its luminescence and scintillation properties were studied. The photoluminescence shows the emission peaks at 310 nm and 323 nm and is related to the 5d-4f transitions in Ce 3+ ion. Photo peak at 511 keV and 1274 keV were obtained with BaF 2-Ce transparent ceramic for Na-22 radioisotopes. Energy resolution of 13.5% at 662 keV is calculated for the BaF 2-Ce transparent ceramic. Light yield of 5100 photons/MeV was recorded for BaF 2-Ce(0.2%) ceramic and is comparable to its single crystal counterpart. Scintillation decay time measurements shows fast component of 58 ns and a relatively slow component of 434 ns under 662 keV gamma excitation. The slower component in BaF 2-Ce(0.2%) ceramic is about 200 ns faster than the STE emission in BaF 2 host and is associated with the dipole-dipole energy transfer from the host matrix to Ce 3+ luminescence center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.