BackgroundRecent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits.ResultsWe confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake.ConclusionsWhile our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.
A glow discharge optical emission spectroscopy (GD-OES) source that operates at atmospheric pressure is described. This device utilizes an electrolytic solution containing the analyte specimen as one of the discharge electrodes. The passage of electrical current (either electrons or positive ions) across the solution/gas phase interface causes local heating and the volatilization of the analyte species. Collisions in the discharge region immediately above the solution surface result in optical emission that is characteristic of the analyte elements. Operation of this device with the analyte solution acting as either the cathode or anode is demonstrated. Current-voltage (i-V) plots reveal abnormal glow discharge characteristics, with operating parameters being dependent on the electrolyte concentration (i.e., solution conductivity) and the gap between the solution surface and the counterelectrode. Typical conditions include discharge currents of 30-60 mA, and potentials of 500-900 V. Electrolyte solutions having pH, pNa, or pLi values of 0.5-2 and interelectrode gaps of 0.5-3 mm produce stable plasmas in which the analyte solutions flow at rates of up to 3.0 mL/min. Preliminary limits of detection are determined for the elements Na, Fe, and Pb to be in the range of 11-14 ppm (approximately 60 ng) for 5-microL sample volumes.
Capillary-channeled polymer (C-CP) fibers are investigated as reversed-phase (RP) stationary phases for high-performance liquid chromatography of proteins. A comparative analysis of column characteristics for polypropylene and poly(ethylene terephthalate) C-CP fiber columns and a conventional packed-bed (C4-derivatized silica) column has been undertaken. Five proteins (ribonuclease A, cytochrome c, lysozyme, myoglobin, bovine serum albumin) were used to investigate the separation characteristics under typical RP gradient conditions. Column performance was compared under standard (identical) and optimized RP chromatographic conditions. The gradient compositions utilized with the C-CP fiber columns are similar to those used with conventional columns, employing flow rates in the 1-6 mL/min range and gradient rates of approximately 1%/min. The packed-bed column was operated as prescribed by the column manufacturer. The retention factor (k'), separation factor (alpha), resolution (Rs), asymmetry factor (As), elution order, and peak capacity values of a four protein separations performed on the C-CP fiber columns are compared to the same separation on the C4 column. One unique feature observed here is the lessening of the percentage of organic modifier necessary to elute the proteins from the fiber phases with increased linear velocity. The potential contribution of the different stationary phases to protein denaturation was evaluated through a spectrophotometric enzymatic activity assay. The repeatability of retention times under both sets of conditions for six consecutive injections of lysozyme on each C-CP fiber column is < or =1.5% RSD. The column-to-column reproducibility of retention times for three columns of each fiber type is also < or =1.5% RSD. The overall performance of the C-CP fiber columns was comparable to the conventional column used in these studies. Basic characteristics demonstrated here suggested further developments in the areas of ultrafast protein separations and preparative-scale protein chromatography.
The performance of microbore columns with polypropylene (PP) capillary-channeled polymer (C-CP) fibers as the support/stationary phase for separation of macromolecules has been investigated. Polypropylene C-CP fibers (40 μm diameter) were packed in fluorinated ethylene propylene (FEP) tubing of inner diameter 0.8 mm and lengths of 40, 60, 80, and 110 cm. The performance of PP fiber packed microbore columns (peak width, peak capacity, and resolution) was evaluated for separation of a three-protein mixture of ribonuclease A, cytochrome c, and transferrin under reversed-phase gradient conditions. The low backpressure characteristics of C-CP fiber columns enable operation at high linear velocities (up to 75 mm s(-1) at 1.5 mL min(-1)). In contrast with the performance of other phases, such velocities enable enhanced resolution of the three-protein mixture, because peak widths decrease with velocity. Increased column length resulted in increased resolution, because the peak widths remained essentially constant, although retention times increased. In addition, it was found that the peak capacity increased with column length and linear velocity. Radial compression of the microbore tubing enhanced the homogeneity of the packing and, thereby, separation efficiency and resolution. Radial compression of columns resulted in a decrease in the interstitial fraction (~5%), but increased resolution of ~14% between ribonuclease A and cytochrome c. Even so, a linear velocity of 75 mm s(-1) required a backpressure of 9.5 MPa only. It is clear that the fluid and solute-transport properties of the C-CP fiber microbore columns afford far better performance than is obtainable by use of standard format columns. The ability to achieve high separation efficiencies, rapidly and with low volume flow rates, holds promise for high-capacity protein separations in proteomics applications.
Isotope ratio (IR) analysis of natural abundance uranium presents a formidable challenge for mass spectrometry (MS): the required spectral dynamic range needs to enable the quantitatively accurate measurement of the 234UO2 species present at ∼0.0053% isotopic abundance. We address this by empowering a benchtop Orbitrap Fourier transform mass spectrometer (FTMS) coupled with the liquid sampling–atmospheric pressure glow discharge (LS-APGD) ion source and an external high-performance data acquisition system, FTMS Booster X2. The LS-APGD microplasma has demonstrated impressive capabilities regarding elemental and IR analysis when coupled with Orbitrap FTMS. Despite successes, there are limitations regarding the dynamic range and mass resolution that stem from space charge effects and data acquisition and processing restrictions. To overcome these limitations, the FTMS Booster was externally interfaced to an LS-APGD Q Exactive Focus Orbitrap FTMS to obtain time-domain signals (transients) and to process unreduced data. The unreduced time-domain data acquisition with user-controlled processing permit the evaluation of the effects of in-hardware transient phasing, increased transient lengths, advanced transient coadding, varying the length of a transient to be processed with a user-defined time increment, and the use of absorption-mode FT (aFT) processing methods on IR analysis. The added capabilities extend the spectral dynamic range of the instrument to at least 4–5 orders of magnitude and provide a resolution improvement from ∼70k to 900k m/Δm at 200 m/z. The empowered LS-APGD Orbitrap platform allows for the simultaneous measurement of 234UO2 and the prominent 235UO2 and 238UO2 isotopic species at their natural abundances, ultimately yielding improvements in performance when compared to previous uranium IR results on this same Q Exactive Focus instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.