1. Six wether sheep were each provided with a permanent cannula in the rumen and re-entrant cannulas in the proximal duodenum.2. In a preliminary study, the sheep consumed 200 g hay and 400 g concentrates supplemented with up to 40 g linseed oil, coconut oil or cod-liver oil daily. Feed was refused at higher levels of supplementation.3. Five of the sheep were used in a 5 x 5 Latin-square experiment. They were given 200g hay and 4OOg concentrates alone (B) or supplemented with 40 g linseed oil (L), coconut oil (C), protected linseed oil or protected coconut oil daily. The protected oils were prepared by emulsifying the free oils with formaldehyde-treated sodium caseinate. Formaldehyde-treated sodium caseinate was also included in the other three diets.4. Digestion in the stomach was measured by spot sampling duodenal digesta, using chromic oxide-impregnated paper as the marker. Microbial flow at the duodenum was measured by use of both diaminopimelic acid (DAPA) and RNA as microbial markers.5. Both the free oils had broadly similar effects despite their very different fatty acid compositions. Digestion in the stomach of organic matter (OM) was reduced from 0.48 (diet B) to 0.29 (diets L and C) and that of neutral-detergent fibre from 0.50 (diet B) to 0.19 (diet L) and 0.12 (diet C). The molar proportions of acetic acid and n-butyric acid were decreased and that of propionic acid was increased. Protozoal numbers were reduced by 78% (diet L) and 90% (diet C). The flow of total nitrogen and microbial N was increased by both oils and the efficiency of microbial protein synthesis (g N/kg OM apparently digested in the rumen) was increased from 30 (diet B) to 85 (diet L) and 74 (diet C) when based on DAPA and from 41 (diet B) to 94 (diet L) and 81 (diet C) when based on RNA. The efficiency when based on true digestion of OM (g N/kg OM truly digested in the rumen) was increased from 23 (diet B) to 46 (diet L) and 44 (diet C) when based on DAPA and from 29 (diet B) to 49 (diet L) and 46 (diet C) when based on RNA. The amounts of microbial OM (g/d) at the duodenum were increased from 68 (diet B) to 124 (diet L) and 106 (diet C) when based on DAPA and from 92 (diet B) to 136 (diet L) and 115 (diet C, non-significant) when based on RNA.6. When the oils were given in the protected form, the effects on digestion in the stomach were reduced but not eliminated. No significant increases in the amount of total N or microbial N at the duodenum were established, though there was a tendency for an increase in the efficiency of microbial protein synthesis with protected linseed oil. The results suggested that the method of protection used reduced the effects of the oils on rumen digestion and synthesis but was only partially successful in preventing hydrogenation of the fatty acids.7. It is concluded that free oils can markedly increase the efficiency of microbial protein synthesis, possibly by their defaunating effect, and that this may enhance the potential for using non-protein-N on oil-supplemented diets.
The antibacterial effect of caprylic acid (35 and 50 mM) on Escherichia coli O157:H7 and total anaerobic bacteria at 39 degrees C in rumen fluid (pH 5.6 and 6.8) from 12 beef cattle was investigated. The treatments containing caprylic acid at both pHs significantly reduced (P < 0.05) the population of E. coli O157:H7 compared with that in the control samples. At pH 5.6, both levels of caprylic acid killed E. coli O157:H7 rapidly, reducing the pathogen population to undetectable levels at 1 min of incubation (a more than 6.0-log CFU/ml reduction). In buffered rumen fluid at pH 6.8, 50 mM caprylic acid reduced the E. coli O157:H7 population to undetectable levels at 1 min of incubation, whereas 35 mM caprylic acid reduced the pathogen by approximately 3.0 and 5.0 log CFU/ml at 8 and 24 h of incubation, respectively. At both pHs, caprylic acid had a significantly lesser (P < 0.05) and minimal inhibitory effect on the population of total anaerobic bacteria in rumen compared with that on E. coli O157:H7. At 24 h of incubation, caprylic acid (35 and 50 mM) reduced the population of total anaerobic bacteria by approximately 2.0 log CFU/ml at pH 5.6, whereas at pH 6.8, caprylic acid (35 mM) did not have any significant (P > 0.05) inhibitory effect on total bacterial load. Results of this study revealed that caprylic acid was effective in inactivating E. coli O157:H7 in bovine rumen fluid, thereby justifying its potential as a preslaughter dietary supplement for reducing pathogen carriage in cattle.
1. Sheep fitted with rumen and re-entrant duodenal cannulas were given diets of approximately 200 g hay and 400 g concentrate mixture alone, or supplemented daily with 40 g linseed or coconut oils free or protected with formaldehyde-casein in a 5 x 5 Latin-square arrangement. Chromic oxide paper was given as a marker at feeding time and passage to the duodenum of neutral-detergent fibre (NDF) and different sugars were estimated from the values for c0nstituent:marker at the duodenum. Contributions of microbial carbohydrates to these flows were estimated from amounts of RNA present.2. The carbohydrate composition of mixed rumen bacteria from sheep rumen digesta were similar regardless of diet. Of the sugars entering the duodenum all the rhamnose and ribose and 0.51,0.24 and 0.35 of the mannose, galactose and starch-glucose respectively, were contributed by the microbes. Virtually all the arabinose, xylose and cellulose-glucose were contributed by the diet.3. For sheep receiving the basal ration, coefficients of digestibility between mouth and duodenum, corrected where necessary for microbial contribution, were 095,0.66,0.67,0.62,0.45 and 0.51 for starch-glucose, mannose, arabinose, galactose, xylose and cellulose-glucose respectively. Corresponding values when free-oil-supplemented diets were given were 0.95,035,0.38,0.55,0.01 and -0.02 respectively. Values for diets supplemented with linseed oil or coconut oil did not differ significantly. Addition of protected oils to the basal feed also resulted in depressed digestibilities of dietary structural sugars but to a far lesser extent than those observed with the free oils.4. Apparent digestibility of NDF was altered in the same direction as those of the main structural sugars, averaging 0.50,O. 17 and 0.29 in animals receiving the basal, free-oil-supplemented or protected-oil-supplemented diets respectively. The reasons for the difference between NDF and discrete carbohydrate analytical totals are discussed.
Several methods were used to monitor the growth of a stable L-form in batch culture. The end of the exponential growth phase was determined with greatest accuracy by the amounts of deoxyribonucleic acid per milliliter of culture. Optical density and viable count data were not as reliable because the L-forms began to lyse at the end of exponential growth. Lysis was detected visually, by phase-contrast observations of wet mounts, and by release of ultraviolet-absorbing material into culture supernatant fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.