A striking similarity exists between the pathogenetic properties of group A streptococci and those of activated mammalian professional phagocytes (neutrophils, macrophages). Both types of cells are endowed by the ability to adhere to target cells; to elaborate oxidants, hydrolases, and membrane-active agents (hemolysins, phospholipases); and to freely invade tissues and destroy cells. From the evolutionary point of view, streptococci might justifiably be considered the forefathers of "modern" leukocytes. Our earlier findings that synergy between a streptococcal hemolysin (streptolysin S, SLS) and a streptococcal thiol-dependent proteinase and between cytotoxic antibodies+complement and streptokinase-activated plasmin readily killed tumor cells, led us to hypothesize that by analogy to the pathogenetic mechanisms of streptococci, the mechanisms of tissue destruction initiated by activated leukocytes in inflammatory sites, as well as in tissues undergoing episodes of ischemia and reperfusion, might also be the result of the synergistic effects among leukocyte-derived oxidants, phospholipases, proteinases, cytokines, and cationic proteins. The current report extends our previous synergy studies with endothelial cells to two additional cell types--monkey kidney epithelial cells and rat beating heart cells. Monolayers of 51Cr-labeled cells that had been treated by combinations of sublytic amounts of hydrogen peroxide (generated either by glucose oxidase, xanthine-xanthine oxidase, or by paraquat) and with sublytic amounts of a variety of membrane-active agents (streptolysin S, phospholipases A2 and C, lysophosphatides, histone, chlorhexidine) were killed in a synergistic manner (double synergy). Crystalline trypsin markedly enhanced cell killing by combinations of oxidant and the membrane-active agents (triple synergy). Injury to the cells was characterized by the appearance of large membrane blebs that detached from the cells and floated freely in the media, looking like lipid droplets. Cytotoxicity induced by the various combinations of agonists was depressed, to a large extent, by scavengers of hydrogen peroxide (catalase, dimethyl thiourea, and by Mn2+) but not by SOD or by deferoxamine. When cationic agents were employed together with hydrogen peroxide, polyanions (heparin, polyanethole sulfonate) were also found to inhibit cell killing. It is proposed that in order to effectively combat the deleterious toxic effects of leukocyte-derived agonists on cells and tissues, antagonistic "cocktails" comprised of cationized catalase, cationized SOD, dimethylthiourea, Mn(2+)+glycine, proteinase inhibitors, putative inhibitors of phospholipases, and polyanions might be concocted. The current literature on synergistic phenomena pertaining to mechanisms of cell and tissue injury in inflammation is selectively reviewed.
In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world.It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes.In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells.The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes.We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity.In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group.On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment.
Cisplatin is a widely used chemotherapeutic drug showing high efficiency in the treatment of primary tumors such as ovarian, testicular and cervical cancers. The major drawback of cisplatin is tumor resistance either acquired or intrinsic. Many mechanisms are involved in the resistance, among them is the Nrf2 pathway which regulates glutathione related enzymes. Caffeic acid, a non-toxic polyphenol which is abundant in many foods modulates glutathione S-transferase (GST) and glutathione reductase (GSR) activity, these enzymes were shown to be involved in resistance of cells towards cisplatin. Caffeic acid induces the Nrf2 pathway and can also inhibit the activity of GST and GSR.Our findings demonstrate that the co-treatment of cancer cells with cisplatin and caffeic acid can enhance cisplatin cytotoxicity and increases the amount of platinum bound to nuclear DNA. However, 6 h of pre incubation with caffeic acid prior to cisplatin treatment led to acquired resistance to cisplatin and reduced DNA binding.In conclusion, the enzyme inhibitory action of caffeic acid is dominant when the two agents are co-administered leading to increased cytotoxicity, and the Nrf2 induction is dominant when the cells are treated with caffeic acid prior to cisplatin treatment leading to resistance.The use of caffeic acid as adjuvant for cisplatin should be carefully examined due to different pharmacokinetic profiles of caffeic acid and cisplatin. Thus, it is questionable if the two agents can reach the tumors at the right time frame in vivo.
A disturbed embryonic antioxidant defense mechanism may play a major role in diabetes‐induced teratogenesis. We therefore studied the antioxidant capacity of 10.5‐day‐old rat embryos and their yolk sacs after culture for 28 hr in vitro under diabetic conditions (3 mg/ml glucose, 2 mg/ml β‐hydroxybutyrate (BHOB) and 10 μg/ml of acetoacetate), as compared with control embryos in vitro. We found a high rate of congenital anomalies, decreased growth and protein content, and a decrease in the activity of both superoxide dismutase (SOD) and catalase (CAT) under diabetic conditions, as compared with controls. The reducing power, which reflects the concentration and type of water‐soluble and of lipid‐soluble low‐molecular‐weight antioxidants (LMWA), was measured by cyclic voltammetry. Generally, LMWA were reduced in the embryos and yolk sacs under diabetic conditions. In the water‐soluble fraction of control embryos and yolk sacs, two peak potentials were found, indicating two major groups of LMWA, while only one peak potential was found under diabetic conditions, indicating that an entire group of LMWA is missing. HPLC studies have demonstrated a decrease in vitamin C (water‐soluble fraction) and in vitamin E (lipid‐soluble fraction) under diabetic culture conditions, and an increase in uric acid. Generally, the concentration of LMWA was higher in the embryos than in the yolk sac. LMWA concentration, protein content, and antioxidant enzyme activity were lower in the malformed experimental embryos than in experimental embryos without anomalies. The addition of vitamins C and E to the diabetic culture medium abolished the deleterious effects of the diabetic serum on the embryos. The disturbed antioxidant defense mechanism under diabetic conditions may be explained, at least in part, by a direct effect of diabetic metabolic factors on the activity of antioxidant enzymes and on the concentration of reducing equivalents. This, in turn, may be embryotoxic.Teratology 60:376–386, 1999. © 1999 Wiley‐Liss, Inc.
Carnosine, anserine and homocarnosine are natural compounds which are present in high concentrations (2-20 mM) in skeletal muscles and brain of many vertebrates. We have demonstrated in a previous work that these compounds can act as antioxidants, a result of their ability to scavenge peroxyl radicals, singlet oxygen and hydroxyl radicals. Carnosine and its analogues have been shown to be efficient chelating agents for copper and other transition metals. Since human skeletal muscle contains one-third of the total copper in the body (20-47 mmol/kg) and the concentration of carnosine in this tissue is relatively high, the complex of carnosine:copper may be of biological importance. We have studied the ability of the copper:carnosine (and other carnosine derivatives) complexes to act as superoxide dismutase. The results indicate that the complex of copper:carnosine can dismute superoxide radicals released by neutrophils treated with PMA in an analogous mechanism to other amino acids and copper complexes. Copper:anserine failed to dismute superoxide radicals and copper:homocarnosine complex was efficient when the cells were treated with PMA or with histone-opsonized streptococci and cytochalasine B. The possible role of these compounds to act as physiological antioxidants that possess superoxide dismutase activity is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.