In this paper, we define residuated skew lattice as non-commutative generalization of residuated lattice and investigate its properties. We show that Green’s relation 𝔻 is a congruence relation on residuated skew lattice and its quotient algebra is a residuated lattice. Deductive system and skew deductive system in residuated skew lattices are defined and relationships between them are given and proved. We define branchwise residuated skew lattice and show that a conormal distributive residuated skew lattice is equivalent with a branchwise residuated skew lattice under a condition.
In this paper, we show the relationship between (skew) deductive system and (skew) filter in residuated skew lattices. It is shown that if a residuated skew lattice is conormal, then any skew deductive system is a skew filter under a condition and deductive system and skew deductive system are equivalent under some conditions too. It is investigated that in branchwise residuated skew lattice, filter, deductive system and skew deductive system are equivalent. We define some types of prime (skew) filters in residuated skew lattices and show the relationship between prime (skew) filters and residuated skew chains. It is proved that in prelinear residuated skew lattice any proper filter can be extended to a maximal, prime filter of type (I). The notion of the radical of a filter is defined and several characterizations of the radical of a filter are given. We show that in non conormal prelinear residuated skew lattice with element 0, infinitesimal elements are equal to intersection of all the maximal filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.