In order to determine the necessary conditions to stabilize intermediates in ribonuclease A catalysis at subzero temperatures for structural studies, we have examined the suitability of alcohol-based cryosolvents. On the basis of thermal denaturation transition curves, the enzyme is in the native conformation in high concentrations of ethanol and methanol, provided the temperature is suitably low. The effects of methanol on the catalytic properties for the hydrolysis for mono- and dinucleotide substrates also are consistent with the absence of adverse effects of the cosolvent. Significant methanolysis occurs in the presence of methanol as cosolvent. The kinetics of 2',3'-CMP hydrolysis are complicated by severe competitive product inhibition, both in aqueous and in methanolic solvents, accounting for the previously observed effect of substrate concentration on the observed Km. Computer-aided analysis allowed the determination of the inhibition constant as a function of experimental parameters. The reaction of ribonuclease A with 2',3'-CMP was investigated at subzero temperatures. The turnover reaction could be made negligible at temperatures below -60 degrees C at pH 3-6 in 70% methanol and below -35 degrees C at pH 2.1. The rate of the catalytic reaction with crystalline enzyme was compared to that of enzyme in solution for both 2',3'-CMP and the dinucleotide CpC. The rates were 50- and 200-fold slower, respectively, in the crystal. These investigations allowed calculation of the necessary conditions for NMR and X-ray diffraction experiments on the trapped enzyme--substrate intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.