The crystallization of melt emulsions is of great interest to the food, cosmetic, and pharmaceutical industries. Surfactants are used in emulsions and suspensions to stabilize the dispersed phase; thus, questions arise about the liquid-liquid and solid-liquid interfaces of the droplets or particles and the distribution of the surfactant in the different phases (continuous and dispersed phase, interface). Nuclear magnetic resonance relaxation and diffusion measurements revealed that the internal and rotational mobility of surfactant molecules at the liquid-liquid interface decreases with increasing droplet sizes. Additionally, solid-liquid interfaces have fewer surfactants than liquid-liquid interfaces as a result of the desorption of the surfactant molecules during the crystallization of the droplets. Relaxation rates of surfactant molecules in aqueous solution as single molecules, micelles, and at the liquid-liquid and solid-liquid interface are analyzed for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.