Background— Lymphatic network and chemokine-mediated signals are essential for leukocyte traffic during the proximal steps of alloimmune response. We aimed to determine the role of lymphatic vessels and their principal growth signaling pathway, vascular endothelial growth factor (VEGF)-C/D/VEGFR-3, during acute and chronic rejection in cardiac allografts. Methods and Results— Analysis of heterotopically transplanted rat cardiac allografts showed that chronic rejection increased VEGF-C + inflammatory cell and hyaluronan receptor-1 (LYVE-1) + lymphatic vessel density. Allograft lymphatic vessels were VEGFR-3 + , contained antigen-presenting cells, and produced dendritic cell chemokine CCL21. Experiments with VEGFR-3/LacZ mice or mice with green fluorescent protein–positive bone marrow cells as cardiac allograft recipients showed that allograft lymphatic vessels originated almost exclusively from donor cells. Intraportal adenoviral VEGFR-3-Ig (Ad.VEGFR-3-Ig/VEGF-C/D-Trap) perfusion was used to inhibit VEGF-C/D/VEGFR-3 signaling. Recipient treatment with Ad.VEGFR-3-Ig prolonged rat cardiac allograft survival. Ad.VEGFR-3-Ig did not affect allograft lymphangiogenesis but was linked to reduced CCL21 production and CD8 + effector cell entry in the allograft. Concomitantly, Ad.VEGFR-3-Ig reduced OX62 + dendritic cell recruitment and increased transcription factor Foxp3 expression in the spleen. In separate experiments, treatment with a neutralizing monoclonal VEGFR-3 antibody reduced arteriosclerosis, the number of activated lymphatic vessels expressing VEGFR-3 and CCL21, and graft-infiltrating CD4 + T cells in chronically rejecting mouse cardiac allografts. Conclusions— These results show that VEGFR-3 participates in immune cell traffic from peripheral tissues to secondary lymphoid organs by regulating allograft lymphatic vessel CCL21 production and suggest VEGFR-3 inhibition as a novel lymphatic vessel–targeted immunomodulatory therapy for cardiac allograft rejection and arteriosclerosis.
Background-Cardiac allograft arteriosclerosis is a complex process of alloimmune response, chronic inflammation, and smooth muscle cell proliferation that includes cross talk between cytokines and growth factors. Methods and Results-Our results in rat cardiac allografts established alloimmune response as an alternative stimulus capable of inducing vascular endothelial growth factor (VEGF) mRNA and protein expression in cardiomyocytes and graft-infiltrating mononuclear inflammatory cells, which suggests that these cells may function as a source of VEGF to the cells of coronary arteries. Linear regression analysis of these allografts with different stages of arteriosclerotic lesions revealed a strong correlation between intragraft VEGF protein expression and the development of intimal thickening, whereas blockade of signaling downstream of VEGF receptor significantly reduced arteriosclerotic lesions. In addition, in cholesterol-fed rabbits, intracoronary perfusion of cardiac allografts with a clinical-grade adenoviral vector that encoded mouse VEGF 164 enhanced the formation of arteriosclerotic lesions, possibly secondary to increased intragraft influx of macrophages and neovascularization in the intimal lesions. Conclusions-Our findings suggest a positive regulatory role between VEGF and coronary arteriosclerotic lesion formation in the allograft cytokine microenvironment.
Background— Angiopoietin (Ang)–1 is an angiogenic growth factor that counteracts the permeability and proinflammatory effects of vascular endothelial growth factor and other proinflammatory cytokines. Recently, we demonstrated that vascular endothelial growth factor enhances cardiac allograft arteriosclerosis. Here, we studied the roles of Ang1, its natural antagonist Ang2, and their receptor Tie2 in rat cardiac allograft arteriosclerosis. Methods and Results— Heterotopic cardiac allografts and syngrafts were transplanted from Dark Agouti (DA) to Wistar-Furth rats and from DA to DA rats, respectively. Immunohistochemistry disclosed that only a few mesenchymal cells expressed Ang1 in normal hearts and syngrafts, whereas no immunoreactivity was found in cardiac allografts undergoing chronic rejection. Ang2 and Tie2 immunoreactivity was induced mainly in capillaries and postcapillary venules in chronic allografts when compared with syngeneic controls, but no immunoreactivity was found in arterial endothelium. Intracoronary perfusion of cardiac allografts with a clinical-grade adenoviral vector encoding human Ang1 (Ad.Ang1) protected against the development of allograft arteriosclerosis. Ad.Ang1 perfusion reduced Ang2 expression in microcirculation, the numbers of graft-infiltrating leukocytes, and the level of immunoactivation and interstitial fibrosis, as well as both the incidence and intensity of intimal lesions. Ad.Ang1 perfusion also increased CD34 + stem cell counts in peripheral blood. Conclusions— Our findings suggest that the antiinflammatory properties of Ang1 may offer an entirely new therapeutic approach to prevent cardiac allograft arteriosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.