We present a new parallel algorithm for computing N point lagrange interpolation on an n-dimensional hypercube with total number of nodes p = 2 n. Initially, we consider the case when N = p. The algorithm is extended to the case when only p (p fixed) processors are available, p < N. We assume that N is exactly divisible by p. By dividing the hypercube into subcubes of dimension two, we compute the products and sums appearing in Lagrange's formula in a novel way such that wasteful repetitions of forming products are avoided. The speed up and efficiency of our algorithm is calculated both theoretically and by simulating it over a network of PCs. (~)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.