PurposeThe structural behavior of reinforced concrete (RC) beams made with waste foundry sand (WFS) was examined in this study by using investigational data. Five RC beams were tested in this present work, four beams with varying WFS content and one beam with natural aggregates. The factors considered for studying the flexural performance of RC beams were WFS content (10%, 20%, 30% and 40%), 15% Ground Granulated Blast Furnace Slag (GGBS) is used as supplementary cementitious (SCM) content for all beams and tension reinforcement ratio (0.95%). The crack pattern of the RC beams with WFS (RCB1, RCB2, RCB3 and RCB4) was similar to that of referral beam–RCB0. The RC beams made with WFS (RCB1, RCB2, RCB3 and RCB4) show lesser number of cracks than referral beam–RCB0. It is observed that RCB1 beam shows higher ultimate moment carrying capacity than other RC beams. A detailed assessment of the investigational results and calculations based on IS: 456-2000 code for flexural strength exhibited that the present provisions conservatively predicts the flexural strength and crack width of RC beams with WFS and 15% GGBS. It is suggested that 10% WFS can be used to make RC beam.Design/methodology/approachIn this present work, four RC beams made WFS and one RC beam made with natural aggregates. 15% GGBS is used as SCM for all RC beams. After casting of RC beams, the specimens were cured with wetted gunny bags for 28 days. After curing, RC beams like RCB0, RCB1, RCB2, RCB3 and RCB4 were tested under a four-point loading simply supported condition. An assessment of investigational results and calculations as per IS: 456-2000 code provisions has been made for flexural strength and crack width of RC beams with WFS and 15% GGBS. The crack pattern is also studied.FindingsFrom this experimental results, it is found that 10% WFS can be used for making RC beam. The RCB1 with 10% WFS shows better flexural performance than other RC beams. RC beams made with WFS show lesser number of cracks than referral beam–RCB0. IS: 456-2000 code provisions can be safely used to predict the moment capacity and crack width of RC beams with WFS and 15% GGBS.Originality/valueBy utilization of WFS, the dumping of waste and environmental pollution can be reduced. By experimental investigation, it is suggested that 10% WFS can be used to make RC structural members for low cost housing projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.