A novel family of optically transparent acrylic nanocomposites containing up to 30 wt % silica nanoparticles with an average diameter of 20 nm was developed for application in structural light modulation (SLM) and stereolithography (SL) technologies. The uniform dispersion of nanoparticles affords a significantly improved toughness/stiffness‐balance of the photopolymerized and postcured nanocomposites. It is possible to increase stiffness, as expressed by Young's modulus, from 1290 to 1700 MPa without encountering the embrittlement typical for many other conventional filled polymers. Fracture behaviour is examined by means of fracture mechanics investigation and SEM analyses of fracture surfaces. According to TEM analyses and measurement of optical transmittance remarkable uniform dispersion of silica nanoparticles was achieved. The silica nanoparticle concentrations up to 17 wt % give only marginally higher viscosities and do not affect transmittance, while slightly increasing the exposure times needed in photopolymerization. Moreover, the silica nanoparticles afford materials with reduced shrinkage and improved properties. The green effective ankle splay out (EASO) measured on H‐shaped diagnostic specimens, is significantly reduced for the nanocomposite materials from 1.38 mm for the unfilled material to 0.82 mm for nanocomposites containing 30 wt % nanosilica. The building accuracy is increased significantly with increasing content of silica nanofillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.