Background: In India, biomass fuel is burned in many homes under inefficient conditions, leading to a complex milieu of particulate matter and environmental toxins known as household air pollution (HAP). Pregnant women are particularly vulnerable as they and their fetus may suffer from adverse consequences of HAP. Fractional exhaled nitric oxide (FeNO) is a noninvasive, underutilized tool that can serve as a surrogate for airway inflammation. We evaluated the prevalence of respiratory illness, using pulmonary questionnaires and FeNO measurements, among pregnant women in rural India who utilize biomass fuel as a source of energy within their home. Methods: We prospectively studied 60 pregnant women in their 1st and 2nd trimester residing in villages near Nagpur, Central India. We measured FeNO levels in parts per billion (ppb), St. George’s Respiratory Questionnaire (SGRQ-C) scores, and the Modified Medical Research Council (mMRC) Dyspnea Scale. We evaluated the difference in the outcome distributions between women using biomass fuels and those using liquefied petroleum gas (LPG) using two-tailed t-tests. Results: Sixty-five subjects (32 in Biomass households; 28 in LPG households; 5 unable to complete) were enrolled in the study. Age, education level, and second-hand smoke exposure were comparable between both groups. FeNO levels were higher in the Biomass vs. LPG group (25.4 ppb vs. 8.6 ppb; p-value = 0.001). There was a difference in mean composite SGRQ-C score (27.1 Biomass vs. 10.8 LPG; p-value < 0.001) including three subtotal scores for Symptoms (47.0 Biomass vs. 20.2 LPG; p-value< 0.001), Activity (36.4 Biomass vs. 16.5 LPG; p-value < 0.001) and Impact (15.9 Biomass vs. 5.2 LPG; p-value < 0.001). The mMRC Dyspnea Scale was higher in the Biomass vs. LPG group as well (2.9 vs. 0.5; p < 0.001). Conclusion: Increased FeNO levels and higher dyspnea scores in biomass-fuel-exposed subjects confirm the adverse respiratory effects of this exposure during pregnancy. More so, FeNO may be a useful, noninvasive biomarker of inflammation that can help better understand the physiologic effects of biomass smoke on pregnant women. In the future, larger studies are needed to characterize the utility of FeNO in a population exposed to HAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.