ARtract-We have presented techniques [ 11-[ 6 ] based on linear prediction (LP) and singular value decomposition (SVD) for accurate estimation of closely spaced frequencies of sinusoidal signals in noise. In this note we extend these techniques to estimate the parameters of exponentially damped sinusoidal signals in noise. The estimation procedure presented here makes use of "backward prediction" in addition to SVD. First, the method is applied to data consisting of one and two exponentially damped sinusoids. The choice of one and two signal components facilitates the comparison of estimation error in pole damping factors and pole frequencies to the appropriate Cramer-eo (CR) bounds and t o traditional methods of linear prediction. Second, our method is applied to an example due to Steiglitz [8] in which the data consists of noisy values of the impulse response samples (composed of many exponentially damped sinusoids) of a linear system Raving both poles and zeros. The poles of the system are accurately determined by our method and the zeros are obtained subsequently, Using Shanks' method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.