In this paper we present a novel way to analyze LADAR images and model its data. Having an aerial LADAR image as data source, our aim is to extract a parametric description of the ground of our scenario in order to discern between the data samples that belong to the ground and those that belong to vehicles, objects or clutter. Once the samples are divided, we process each of the objects to perform an early classification refering to the object type (vehicle, building or clutter). The final step of our method is to estimate the pose of the interesting objects by building its corresponding oriented 3D bounding box. Our method uses robust statistics in order to extract proper descriptions of both the ground and the oriented bounding boxes of the objects. Specifically, we use two robust parameter estimators : The Least Median Squares and the Variable Bandwith Quick Maximum Density Power Estimator, depending on the percentage of outliers that may be present in the different steps of our approach. Our method is open and can also be used along with other approaches that focus on extracting 3D invariant features or enhanced by applying a recognition step with the aid of model databases and 3D registration algorithms, such as the ICP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.