Summary -Best linear unbiased prediction (BLUP) can be applied to marker-assisted selection. This application requires computation of the inverse of the conditional covariance matrix (G v )
The Editorial Board here introduces a new kind of scientific report in the Journal, whereby a current field of research and debate is given emphasis, being the subject of an open discussion within these columns.As
Recent developments in the theory of the covariance between relatives in crosses from 2 populations, under additive inheritance, are used to predict breeding values (BV) by best linear unbiased prediction (BLUP) using animal models. The consequences of incorrectly specifying the covariance matrix of BV is discussed. The theory of the covariance between relatives in crosses from 2 populations is extended for predicting BV in models with multiple traits. A numerical example illustrates the prediction procedures. cross / heterogeneous additive variance / segregation variance / genetic group / BLUP-animal model Résumé-Prédiction des valeurs génétiques avec des modèles individuels additifs pour des croisements à partir de 2 populations. De récentes avancées de la théorie de la covariance entre apparentés dans les croisements entre 2 populations, en hérédité additive, sont utilisées pour prédire les valeurs génétiques (VG) par le BL UP-modèle animal. Les conséquences résultant d'une définition incorrecte de la matrice de covariance des VG sont discutées. La théorie de la covariance entre apparentés en croisement à partir de 2 populations est étendue à la prédiction de VG pour plusieurs caractères. Un exemple numérique illustre les procédures de prédiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.