This contribution presents sediment classification results derived from different sources of data collected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder (MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e., the Multi-Element Detection System for Underwater Sediment Activity (Medusa), towed over the sediments and measuring sediment natural radioactivity. Two analysis methods are employed for sediment classification based on the MBES data. The first is a Bayesian estimation method that uses the average backscatter data per beam and, therefore, is independent of the quality of the MBES calibration. The second is a model-based method that matches the measured backscatter curves to theoretical curves, predicted by a physics-based model. Medusa provides estimates for the concentrations of potassium, uranium, thorium, and cesium, known to be indicative for sediment properties, viz. mean grain size, silt content, and the presence of organic matter. In addition, a hydrophone attached to the Medusa system provides information regarding the sediment roughness. This paper presents an inter-comparison between the sediment classification results using the above-mentioned methods. It is shown that although originating from completely different sources, the MBES and Medusa provide similar information, revealing the same sediment distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.