TROPOspheric Monitoring Instrument (TROPOMI), on‐board the Sentinel‐5 Precurser satellite, is a nadir‐viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near‐infrared, and shortwave infrared. From these spectra several important air quality and climate‐related atmospheric constituents are retrieved, including nitrogen dioxide (NO2) at unprecedented spatial resolution from a satellite platform. We present the first retrievals of TROPOMI NO2 over the Canadian Oil Sands, contrasting them with observations from the Ozone Monitoring Instrument satellite instrument, and demonstrate TROPOMI's ability to resolve individual plumes and highlight its potential for deriving emissions from individual mining facilities. Further, the first TROPOMI NO2 validation is presented, consisting of aircraft and surface in situ NO2 observations, and ground‐based remote‐sensing measurements between March and May 2018. Our comparisons show that the TROPOMI NO2 vertical column densities are highly correlated with the aircraft and surface in situ NO2 observations, and the ground‐based remote‐sensing measurements with a low bias (15–30 %); this bias can be reduced by improved air mass factors.
Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.
Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69-89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E. The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurementbased emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.volatile organic compounds | emissions | emission inventory validation | oil sands | aircraft measurements
The oil and gas (O&G) sector represents a large source of greenhouse gas (GHG) emissions globally. However, estimates of O&G emissions rely upon bottom-up approaches, and are rarely evaluated through atmospheric measurements. Here, we use aircraft measurements over the Canadian oil sands (OS) to derive the first top-down, measurement-based determination of the their annual CO 2 emissions and intensities. The results indicate that CO 2 emission intensities for OS facilities are 13–123% larger than those estimated using publically available data. This leads to 64% higher annual GHG emissions from surface mining operations, and 30% higher overall OS GHG emissions (17 Mt) compared to that reported by industry, despite emissions reporting which uses the most up to date and recommended bottom-up approaches. Given the similarity in bottom-up reporting methods across the entire O&G sector, these results suggest that O&G CO 2 emissions inventory data may be more uncertain than previously considered.
Abstract. Aircraft-based measurements of methane (CH 4 ) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH 4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NO y and rBC) and elevated plumes from bitumen upgrading facilities (SO 2 and NO y ). Emission rates of CH 4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH 4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ∼ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH 4 h −1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH 4 (> 70 %). The sum of measured emission rates of CH 4 from the five major facilities, 19.2 ± 1.1 t CH 4 h −1 , was similar to a single mass-balance determination of CH 4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH 4 h −1 . The measured hourly CH 4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH 4 yr −1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH 4 and to allow for better estimates of annual emissions and year-to-year variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.