The prostate-specific membrane antigen (PSMA) is a 100 kDa type II transmembrane glycoprotein with enzymatic activity similar to the family of zinc-dependent exopeptidases. This protein is of great medical and pharmacological interest as overexpression in prostate cells is related to the progression of prostate cancer; therefore, it represents an important target for the design of radiopharmaceuticals. The presence of two Zn 2+ ions in the active site is crucial to the enzymatic activity and the design of high-affinity inhibitors. The amino acid residues coordinating these ions are highly conserved in PSMA orthologs from plants to mammals, and site-mutagenesis assays of these residues show a loss of enzymatic function or reduction of the kinetic parameters. In the present work, we performed molecular dynamics simulation of PSMA with the purpose of characterizing it energetically and structurally. We elucidated the differences of PSMA with its two Zn +2 ions as cofactors and without them in the free energy profile, and in four structural parameters: root mean square deviations and root mean square fluctuations by atom and amino acid residue, radius of gyration, and solvent accessible surface area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.