Dispersion of electromagnetic waves is usually described in terms of an integro-differential equation. In this paper we show that whenever a differential operator can be found that annihilates the susceptibility kernel of the medium, then dispersion can be modeled by a partial differential equation without nonlocal operators.
Let D be a bounded, simply connected domain in the plane R2 that is starlike with respect to the origin and has C2, α boundary, ∂D, described by the equation in polar coordinateswhere C2, α denotes the space of twice Hölder continuously differentiable functions of index α. In this paper, it is shown that any solution of the Helmholtz equationin D can be approximated in the space by an entire Herglotz wave functionwith kernel g ∈ L2[0,2π] having support in an interval [0, η] with η chosen arbitrarily in 0 > η < 2π.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.