Hydatid cyst is a parasitic cyst caused by the tapeworm Echinococcus that occurs primarily in sheep grazing areas worldwide. It is a chronic disease, and the cysts can be localized in unusual anatomical and geographic locations. It is known to affect the head and neck region. Patients must undergo a thorough systemic investigation as 20–30% show multiorgan involvement. We report a case of hydatid cyst occurring in the buccal mucosa of a 45- year -old male presenting as a small asymptomatic lump and emphasize on its rarity and diagnostic issues.
The technological progress in the digitalization of a complete histological glass slide has opened a new door in the tissue based diagnosis. Automated slide diagnosis can be made possible by the use of mathematical algorithms which are formulated by binary codes or values. These algorithms (diagnostic algorithms) include both object based (object features, structures) and pixel based (texture) measures. The intra-and inter-observer errors inherent in the visual diagnosis of a histopathological slide are largely replaced by the use of diagnostic algorithms leading to a standardized and reproducible diagnosis. The present paper reviews the advances in digital histopathology especially related to the use of mathematical algorithms (diagnostic algorithms) in the field of oral histopathology. The literature was reviewed for data relating to the use of algorithms utilized in the construction of computational software with special applications in oral histopathological diagnosis. The data were analyzed, and the types and end targets of the algorithms were tabulated. The advantages, specificities and reproducibility of the software, its shortcomings and its comparison with traditional methods of histopathological diagnosis were evaluated. Algorithms help in automated slide diagnosis by creating software with possible reduced errors and bias with a high degree of specificity, sensitivity, and reproducibility. Akin to the identification of thumbprints and faces, software for histopathological diagnosis will in the near future be an important part of the histopathological diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.