In active subjects exercising at heavy exercise intensities, we observed that the appearance of the accelerated drop in accessory respiratory muscle oxygenation-associated with high ventilatory level-was related with the attenuated fall in leg muscle oxygenation detected with near-infrared spectroscopy. This suggests that the high oxygen requirement of respiratory muscle leads to limited oxygen use by locomotor muscles as demonstrated in endurance-trained subjects. The phenomenon observed was associated with reduced leg blood volume, supporting the occurrence of leg vasoconstriction. These events appeared not only at maximal exercise but onward above the respiratory compensation point.
Greater muscle deoxygenation at maximal exercise in hypoxemic athletes seems to be due, at least in part, to reduced oxygen delivery--that is, exercise-induced hypoxemia--to working muscle added to the metabolic demand. In addition, our finding is also consistent with the hypothesis of greater muscle oxygen extraction in order to counteract reduced O2 availability.
This study examines the effect of prior heavy exercise on muscle deoxygenation kinetics at the onset of heavy-intensity cycling exercise. Ten young male adults (20 +/- 2 years) performed two repetitions of step transitions (6 min) from 35 W to heavy-intensity exercise preceded by either no warm-up or by a heavy-intensity exercise. VO2 was measured breath-by-breath, and muscle deoxygenation (HHb) and total hemoglobin (Hb(tot)) were monitored continuously by near-infrared spectroscopy. We used a two-exponential model to describe the VO2 kinetics and a mono-exponential model for the HHb kinetic. The parameters of the phase II VO2 kinetics (TD1 VO2, tau1 VO2 and A1 VO2) were unaffected by prior heavy exercise, while some parameters of local muscle deoxygenation kinetics were significantly faster (TD HHb: 7 +/- 2 vs. 5 +/- 2 s; P < 0.001, MRT HHb: 20 +/- 3 vs. 15+/- 4 s; P < 0.05). Blood lactate, heart rate and Hb(tot) values were significantly higher before the second bout of heavy exercise. These results collectively suggest that the prior heavy exercise probably increased muscle O2 availability and improved O2 utilization at the onset of a subsequent bout of heavy exercise.
One-leg cycling training could involve specific adaptations in comparison to a standard rehabilitation program. Moreover, OLC training during rehabilitation seems to stop the effects of hypoactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.