International audienceComparison exercises have been carried out by different research teams to study the sensitivity of the natural convection occurring in a vertical asymmetrically heated channel to four sets of open boundary conditions. The dimensionless parameters have been chosen so that a return flow exists at the outlet. On the whole, results provided by the partners are in good agreement; benchmark solutions are then defined for each of the boundary conditions. Whilst the local and average Nusselt numbers based on the entrance temperature do not depend much on conditions applied in the aperture sections, the net fluid flow rates crossing the channel and the characteristics of the recirculation cells are highly influenced. But we proved that these modifications of flow patterns do not alter significantly the fluid flow rates leaving the channel through the exit section
Numerical simulations of mixed convection of air between vertical isothermal surfaces were conducted in order to determine the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal, parallel plates cooled by mixed convection. Comparisons between approximate analytical solutions for natural and forced convection are first discussed. It is shown that the agreement is fairly good. From the computations carried out for aiding mixed convection by assuming a pressure drop at the outlet section rather than a constant flow rate, it is numerically predicted that the optimum spacing is smaller than those for pure natural or pure forced convection. This spacing is determined according to the pressure drop. As a sample, we considered an array of 10 cm-height, isothermal surfaces at temperature T h = 340 K with air as the working fluid entering into the channels at T 0 = 300 K. The increases in heat flux corresponding to the optimal spacing are discussed for outlet pressure drops ranging from −0.1 P a to −1 P a. Such a range covers the entire mixed convection regime for this specific application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.