SummaryIn Kinetoplastida, trypanothione and trypanothione reductase (TRYR) provide an intracellular reducing environment, substituting for the glutathione±glu-tathione reductase system found in most other organisms. To investigate the physiological role of TRYR in Trypanosoma brucei, we generated cells containing just one trypanothione reductase gene, TRYR, which was under the control of a tetracycline-inducible promoter. This enabled us to regulate TRYR activity in the cells from less than 1% to 400% of wild-type levels by adjusting the concentration of added tetracycline. In normal growth medium (which contains reducing agents), trypanosomes containing less than 10% of wild-type enzyme activity were unable to grow, although the levels of reduced trypanothione and total thiols remained constant. In media lacking reducing agents, hypersensitivity towards hydrogen peroxide (EC 50 3.5 mM) was observed compared with the wild type (EC 50 223 mM). The depletion of TRYR had no effect on susceptibility to melarsen oxide. The infectivity and virulence of the parasites in mice was dependent upon tetracycline-regulated TRYR activity: if the trypanosomes were injected into mice in the absence of tetracycline, no infection was detectable; and when tetracycline was withdrawn from previously infected animals, the parasitaemia was suppressed.
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.
In the search for new therapeutic tools against American Trypanosomiasis palladium complexes with bioactive nitrofuran-containing thiosemicarbazones as ligands were obtained. Sixteen novel palladium (II) complexes with the formulas [PdCl2(HL)] and [Pd(L)2] were synthesized, and the crystal structure of [Pd(5-nitrofuryl-3-acroleine thiosemicarbazone)2] x 3DMSO was solved by X-ray diffraction methods. Most complexes showed higher in vitro growth inhibition activity against Trypanosoma cruzi than the standard drug Nifurtimox. In most cases, the activity of the ligand was maintained or even increased as a result of palladium complexation. In addition, the complexes' mode of antitrypanosomal action was investigated. Although the complexes showed strong DNA binding, all data strongly suggest that the main trypanocidal mechanism of action is the production of oxidative stress as a result of their bioreduction and extensive redox cycling. Moreover, the complexes were found to be irreversible inhibitors of trypanothione reductase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.