Internet of Things (IoT) network contains heterogeneous resource-constrained computing devices which has its unique reputation in IoT environments. In spite of its distinctiveness, the network performance deteriorates by the distributed contention of the nodes for the shared wireless medium in IoT. In IoT network, the Medium Access Control (MAC) layer contention impacts the level of congestion at the transport layer. Further, the increasing node contention at the MAC layer increases link layer frame drops resulting in timeouts at the transport layer segments and the performance of TCP degrades. In addition to that, the expiration of maximum retransmission attempts and the high contentions drive the MAC retransmissions and the associated overheads to reduce the link level throughput and the packet delivery ratio. In order to deal with aforementioned problems, the Adaptive Contention Window (ACW) is proposed, which aims to reduce the MAC overhead and retransmissions by determining active queue size at the contending nodes and the energy level of the nodes to improve TCP performance. Further, the MAC contention window is adjusted according to the node's active queue size and the residual energy and TCP congestion window is dynamically adjusted based on the MAC contention window. Hence, by adjusting the MAC Adaptive Contention Window, the proposed model effectively distributes the access to medium and assures improved network throughput. Finally, the simulation study implemented through ns-2 is compared with an existing methodology such as Cross-Layer Congestion Control and dynamic window adaptation (CC-BADWA); the proposed model enhances the network throughput with the minimal collisions.
In the present decade, image processing techniques are extensively utilized in various medical image diagnoses, specifically in dealing with cancer images for detection and treatment in advance. The quality of the image and the accuracy are the significant factors to be considered while
analyzing the images for cancer diagnosis. With that note, in this paper, an Enhanced Cancer Image Diagnosis and Segmentation (ECIDS) framework has been developed for effective detection and segmentation of lung cancer cells. Initially, the Computed Tomography lung image (CT image) has been
processed for denoising by employing kernel based global denoising function. Following that, the noise free lung images are given for feature extraction. The images are further classified into normal and abnormal classes using Feed Forward Artificial Neural Network Classification. With that,
the classified lung cancer images are given for segmentation and the process of segmentation has been done here with the Active Contour Modelling with reduced gradient. The segmented cancer images are further given for medical processing. Moreover, the framework is experimented with MATLAB
tool using the clinical dataset called LIDC-IDRI lung CT dataset. The results are analyzed and discussed based on some performance evaluation metrics such as energy, Entropy, Correlation and Homogeneity are involved in effective classification.
In the present scenario of electronic commerce (E-Commerce), the indepth knowledge of user interaction with resources has become a significant research concern that impacts more on analytical evaluations of recommender systems. For staying in aggressive E-Commerce, various products and services regarding distinctive requirements must be provided on time. Moreover, because of the large amount of product information available online, Recommender Systems (RS) are required to analyze the availability of consumers, which improves the decision-making of customers with detailed product knowledge and reduces time consumption. With that note, this paper derives a new model called User Interaction based Recommender System (UI-RS) that utilizes the data from multiple sources and opinion-based analysis for sensing the consumer needs and interests. For that, Content-Based Filtering (CBF) analyses various products and determines the likeliness of products based on User Interaction to recommend that to consumers. Then, the product information from multiple sources is combined with Dempster-Shafer (D-S) evidence theory, and then, decision making for product recommendation is performed with CBF. Moreover, the modified Radial Basis Function Neural Networks (RBFNN) technique has been incorporated for measuring product recommendations. The results show that the proposed model produces better results in providing accurate recommendations to Consumers with a higher rate of coverage and precision, thereby enhancing significant growth in E-Commerce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.