Tumor necrosis factor-alpha (TNF-alpha), a known pro-inflammatory cytokine, has been suggested to play a role in the pathogenesis of inflammatory bowel disease (IBD) by mediating damage to the intestinal epithelial cells. The present study demonstrates that TNF-alpha potentiates release and metabolism of 14C-labeled arachidonic acid (14C-AA) in cultured intestinal epithelial cells (INT 407). Although TNF-alpha on its own was but a weak stimulator of cellular 14C-AA turnover, it significantly potentiated the release of 14C-AA and 14C-labeled prostaglandin E2(14C-PGE2) after stimulation with three known phospholipase A2 activators: phospholipase. C from Clostridium perfringens, the calcium ionophore A23187, and the phorbol ester 4-beta-phorbol-12-myristate-13-acetate (PMA). The phospholipase A2 inhibitor quinacrine significantly reduced both AA and PGE2 release after combined stimulation with phospholipase C and TNF-alpha. In contrast to its effect on the AA turnover, TNF-alpha did not affect the phospholipase C-stimulated production of platelet-activating factor (PAF-acether). Taken together, these findings indicate that a) TNF-alpha potentiates phospholipase A2-stimulated AA release from cultured intestinal epithelial cells; b) TNF-alpha may stimulate phospholipase A2-dependent AA release without affecting the formation of PAF-acether and c) pretreatment with TNF-alpha potentiates the formation of PGE2 after stimulation with phospholipase A2 activators. In summary, the present investigation points to the possibility that TNF-alpha may stimulate intestinal epithelial cells to produce biologically active AA metabolites and that this stimulation may be modulated by components of the intestinal luminal content, like bacterial toxins.
The mechanisms by which phospholipase C from Clostridium perfringens stimulates the formation of platelet-activating factor (PAF-acether) in cultured intestinal epithelial cells (INT 407) were investigated. Although stimulation with phospholipase C caused a significant formation of PAF-acether, there was no significant increase in the cellular levels of lysoPAF-acether after stimulation. Moreover, when cells prelabeled with 3H-1-O-alkyl-2-acyl-sn-glycerophosphocholine were stimulated with phospholipase C, the 3H-lysoPAF-acether content was not increased in stimulated cells as compared with unstimulated cells. When cells were preincubated with the calmodulin inhibitor trifluoperazine (TFPA), the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), or the combined phospholipase A2-inhibitor and lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) before stimulation with phospholipase C, the PAF-acether formation was significantly decreased. The phospholipase A2 inhibitor 4-bromophenacyl bromide (BPB), on the other hand, had no significant effect on the PAF-acether formation. Preincubation with NDGA also decreased the levels of lysoPAF-acether, whereas BPB, H7, or TFPA had no such effect. These findings indicate that stimulation of acetyltransferase activity with increased acetylation of lysoPAF-acether may be one way by which phospholipase C from C. perfringens stimulates formation of PAF-acether in INT 407 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.