Rigid spherical particles in oscillating fluid flows form interesting structures as a result of fluid mediated interactions. Here we show that spheres under horizontal vibration align themselves at right angles to the oscillation and sit with a gap between them. The details of this behavior have been investigated through experiments and simulations. We have carried out experiments in which a pair of stainless steel spheres is shaken horizontally in a cell filled with glycerol-water fluid mixtures of three different viscosities, at various frequencies and amplitudes of oscillation. There is an equilibrium gap between the particles resulting from a long-range attraction and a short-range repulsion. The size of the gap was found to depend on the fluid viscosity and the vibratory parameters, and we have identified two distinct scaling regimes for the dependence of the gap on the system parameters. Using a Navier-Stokes solver the same system was simulated. The interaction force between the spheres was measured and the streaming flows induced by the motion were determined.
We describe experiments and simulations demonstrating the propulsion of a neutrally-buoyant swimmer that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as the Reynolds number increases, from that generated by two independent oscillating spheres to a collective flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening of a jet of fluid in the wake of the swimmer.
A collection of spherical particles subjected to horizontal oscillatory fluid flow is known to form chains perpendicular to the direction of the oscillation. We have developed computer simulations to model such a system and have validated them against experiments carried out in a small fluid-filled cell. In both experiment and simulation we find that the particles go through the same stages of evolution from a dispersed initial configuration to an ordered chain structure. We then use our computer simulations to investigate in detail the interactions responsible for chain formation and the interaction between fully formed chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.