The fullerene C(60) can be converted into two different structures by high pressure and temperature. They are metastable and revert to pristine C(60) on reheating to 300 degrees C at ambient pressure. For synthesis temperatures between 300 degrees and 400 degrees C and pressures of 5 gigapascals, a nominal face-centered-cubic structure is produced with a lattice parameter a(o) = 13.6 angstroms. When treated at 500 degrees to 800 degrees C at the same pressure, C(60) transforms into a rhombohedral structure with hexagonal lattice parameters of a(o) = 9.22 angstroms and c(o) = 24.6 angstroms. The intermolecular distance is small enough that a chemical bond can form, in accord with the reduced solubility of the pressure-induced phases. Infrared, Raman, and nuclear magnetic resonance studies show a drastic reduction of icosahedral symmetry, as might occur if the C(60) molecules are linked.
N-channel field effect transistors with excellent device characteristics have been fabricated by utilizing C60 as the active element. Measurements on C60 thin films in ultrahigh vacuum show on-off ratios as high as 106 and field effect mobilities up to 0.08 cm2/V s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.