A series of antagonists of gonadotropin-releasing hormone (GnRH) of the general formula Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph/4Amf(P)-D4Aph/D4Amf(Q)-Leu-ILys-Pro-DAla-NH2 was synthesized, characterized, and screened for duration of inhibition of luteinizing hormone release in a castrated male rat assay. Selected analogues were tested in a reporter gene assay (IC50 and pA2) and an in vitro histamine release assay. P and Q contain urea/carbamoyl functionalities designed to increase potential intra- and intermolecular hydrogen bonding opportunities for structural stabilization and peptide/receptor interactions, respectively. These substitutions resulted in analogues with increased hydrophilicity and a lesser propensity to form gels in aqueous solution than azaline B [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Atz)-D4Aph(Atz)-Leu-ILys-Pro-DAla-NH2 with Atz = 3'-amino-1H-1',2',4'-triazol-5'-yl, 5], and in some cases they resulted in a significant increase in duration of action after subcutaneous (s.c.) administration. Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(L-hydroorotyl)-D4Aph(carbamoyl)-Leu-ILys-Pro-DAla-NH2 (acetate salt is FE200486) (31) and eight other congeners (20, 35, 37, 39, 41, 45-47) were identified that exhibited significantly longer duration of action than acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(Ac)-Leu-ILys-Pro-DAla-NH2] (6) when administered subcutaneously in castrated male rats at a dose of 50 microg in 100 microL of phosphate buffer. No correlation was found between retention times on a C18 reverse phase column using a triethylammonium phosphate buffer at pH 7.0 (a measure of hydrophilicity) or affinity in an in vitro human GnRH report gene assay (pA2) and duration of action. FE200486 was selected for preclinical studies, and some of its properties were compared to those of other clinical candidates. In the intact rat, ganirelix, abarelix, azaline B, and FE200486 inhibited plasma testosterone for 1, 1, 14, and 57 days, respectively, at 2 mg/kg s.c. in 5% mannitol (injection volume = 20 microL). Based on the information that 31, 33, 35 and 37 were significantly shorter acting than acyline or azaline B after intravenous administration (100 microg/rat), we surmised that the very long duration of action of the related FE200486 (for example) was likely due to unique physicochemical properties such as solubility in aqueous milieu, comparatively low propensity to form gels, and ability to diffuse at high concentrations in a manner similar to that described for slow release formulations of peptides. Indeed, in rats injected s.c. with FE200486 (2 mg/kg), plasmatic concentrations of FE200486 remained above 5 ng/mL until day 41, and the time after which they dropped below 3 ng/mL and plasma LH levels started rising until full recovery was reached at day 84 with levels of FE200486 hovering around 1 ng/mL. Additionally, FE200486 was less potent at releasing histamine from isolated rat mast cells than any of the GnRH antagonists presently described in preclinical reports.
Acute suppression of dipeptidyl peptidase IV (DPP-IV) activity improves glucose tolerance in the Zucker fatty rat, a rodent model of impaired glucose tolerance, through stabilization of glucagon-like peptide (GLP)-1. This study describes the effects of a new and potent DPP-IV inhibitor, FE 999011, which is able to suppress plasma DPP-IV activity for 12 h after a single oral administration. In the Zucker fatty rat, FE 999011 dose-dependently attenuated glucose excursion during an oral glucose tolerance test and increased GLP-1(7-36) release in response to intraduodenal glucose. Chronic treatment with FE 999011 (10 mg/kg, twice a day for 7 days) improved glucose tolerance, as suggested by a decrease in the insulin-to-glucose ratio. In the Zucker diabetic fatty (ZDF) rat, a rodent model of type 2 diabetes, chronic treatment with FE 999011 (10 mg/kg per os, once or twice a day) postponed the development of diabetes, with the twice-a-day treatment delaying the onset of hyperglycemia by 21 days. In addition, treatment with FE 999011 stabilized food and water intake to prediabetic levels and reduced hypertriglyceridemia while preventing the rise in circulating free fatty acids. At the end of treatment, basal plasma GLP-1 levels were increased, and pancreatic gene expression for GLP-1 receptor was significantly upregulated. This study demonstrates that DPP-IV inhibitors such as FE 999011 could be of clinical value to delay the progression from impaired glucose tolerance to type 2 diabetes.
Degarelix (FE 200486) is a member of a new class of water-soluble (>50 mg/ml) gonadotropin-releasing hormone (GnRH) antagonists in clinical development for prostate cancer. Upon subcutaneous administration, degarelix forms a gel that results in a sustained release of the compound into the circulation, immediately blocking GnRH receptors in the pituitary and inducing a fast and sustained suppression of gonadotrophin secretion in rats and primates. One of the few animal models of prostate adenocarcinoma is the Dunning R-3327H rat carcinoma transplanted into Copenhagen rats. The growth of the Dunning tumor can be inhibited by various treatments reported to be effective in the clinic, such as GnRH superagonists, antiandrogens, 5-alphareductase inhibitors, tyrosine kinase inhibitors, and surgical castration. We report in this study that degarelix produces a fast and sustained suppression of the pituitary gonadal axis in rats and a similar inhibition of tumor growth compared with surgical castration in the Dunning R-3327H rat carcinoma model. First, degarelix as been compared with d-Trp(6)-luteinizing hormone-releasing hormone and surgical castration on a short-term study (2 months); and second, degarelix has been compared with leuprolide and surgical castration on a long-term study (12 months). In both studies, degarelix demonstrated a sustained inhibition of tumor growth at least comparable with surgical castration. These data provide a convincing profile of degarelix as a potential candidate for the clinical management of sex steroid-dependent pathologies, such as prostate cancer, where long-term reversible chemical castration is required.
Non-Peptide Oxytocin Agonists. -Compound (XI) shows strong oxytocin-receptor binding activity. -(PITT, G. R. W.; BATT, A. R.; HAIGH, R. M.; PENSON, A. M.; ROBSON, P. A.; ROOKER, D. P.; TARTAR, A. L.; TRIM, J. E.; YEA, C. M.; ROE*, M. B.; Bioorg. Med.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.