Nucleotides of cytosine and uracil are readily mercurated by heating at 37-50 degrees in buffered aqueous solutions (pH 5.0-8.0) containing mercuric acetate. Proton magnetic resonance, elemental, electrophoretic, and chromatographic analyses have shown the products to be 5-mercuricytosine and 5-mercuriuracil derivatives, where the mercury atom is covalently bonded. Polynucleotides can be mercurated under similar conditions. Cytosine and uracil bases are modified in RNA while only cytosine residues in DNA are substituted. There is little, if any, reaction with adenine, thymine, or guanine bases. The rate of polymer mercuration is, unlike that of mononucleotides, markedly influenced by the ionic strength of the reaction mixture: the lower the ionic strength the faster the reaction rate. Pyrimidine residues in single- and double-stranded polymers react at essentially the same rate. Although most polynucleotides can be extensively mercurated at pH 7.0 in sodium or Trisacetate buffers, tRNA undergoes only limited substitution in Tris buffers. The mild reaction conditions give minimal single-strand breakage and, unlike direct iodination procedures, do not produce pyrimidine hydrates. Mercurated polynucleotides can be exploited in a variety of ways, particularly by crystallographic and electron microscopic techniques, as tools for studying polynucleotide structure.
Polynucleotides containing covalently bound mercury atoms have been prepared by chemical or enzymatic syntheses and some of their physical and biochemical properties studied. The mercury substituents do not appear to alter significantly normal polynucleotide structure. Mercurated polymers function efficiently as templates for nucleic acid polymerases, they are fully susceptible to degradation by standard nucleases, and their denaturation and reannealing properties resemble those of the corresponding nonmercurated polymers. While the Tm's of DNA duplexes are lowered by extensive mercuration, the Tm's of DNA-RNA hybrids and RNA duplexes are either unaffected or elevated. Mercuration, as would be expected, greatly increases the buoyant density of both DNA and RNA. The introduction of as few as one mercury atom per 200 bases permits the selective and quantitative retention of the mercurated polymer probe (and associated nucleotide sequences) on columns of sulfhydryl-agarose. The use of mercurated nucleotides (as polymerase substrates) and oligonucleotides (as primers) in conjunction with sulfhydryl-agarose chromatography provides a simple and efficient method for the isolation of selected polynucleotide sequences, such as specific in vitro transcription products or terminal fragments of duplex DNA. Products absorbed to the affinity resin are readily recovered for further analysis by eluting with buffers containing mercaptoethanol. Although the mercury-carbon bond is somewhat thermolabile, mercurated polynucleotides are suitable as probes in low temperature hybridization studies.
"Nubiotics" are a novel class of proprietary protonated nucleic acid-based drugs shown to have potent in vitro antibacterial activities against a number of gram-positive and gram-negative bacteria. These nubiotics are evaluated here for their in vivo therapeutic efficacy for the treatment of burn wound infection caused by Pseudomonas aeruginosa. To achieve this, a burn wound infection model was established in mice by using a highly pathogenic burn wound clinical isolate of P. aeruginosa. Lethal doses of the bacteria were determined for two routes of infection (subcutaneous and topical), representing systemic and local forms of infection, respectively. Using this infection model, treatment with nubiotics by various routes of drug administration was evaluated and optimized. A total of 12 nubiotics and their analogues were tested and of these, Nu-2, -3, -4, and -5 were found to be extremely efficacious in the postexposure treatment of burn wound infection (60 to 100% survival rates versus 0% for untreated control [P < 0.05]). These nubiotics were effective when given either systemically by intravenous and/or subcutaneous administration or given locally to the affected site in the skin by topical application. Treatment by these two routes resulted in almost 100% survival rates and complete eradication of the bacteria from infection sites in the livers, spleens, and blood. These nubiotics were found to be as effective as intravenously administered ciprofloxacin, a potent and broad-spectrum fluoroquinolone. These results suggest that nubiotics may be a promising and effective approach for the treatment of burn wound infection caused by P. aeruginosa.
In this study of embryo development in Phaseolus vulgaris L., we found that immature embryonic axes placed in culture show a growth lag before germinating. The length of this lag phase varies according to axis age at excision, but is not affected by transfer to fresh medium, alteration of sucrose concentration between 0.5 and 2%, or whether the culture medium is liquid or agar-solidified. The lag phase was shortened by both actinomycin D and cordycepin treatment, and by treatment with 10(-5) to 10(-6) M benzyladenine. The effect of abscisic acid (ABA) varied with concentration: below a certain level, it had no effect on the lag phase, but above that level it inhibited, germination. This threshold concentration was 10(-7) M for 20-d-old axes but increased to 10(-5) M by the time the axes were 32 to 34 d old. To determine whether the axes were continuing their embryonic development during the lag phase, we tested them for desiccation-tolerance and for synthesis of phaseolin, a seed storage protein which is specific for embryos of P. vulgaris. The ability to germinate after rapid desiccation was acquired by axes at 26 d past anthesis; when axes younger than this were placed in culture, they developed desiccation-tolerance during the lag phase of growth, indicating that they were continuing embryonic maturation. Phaseolin was present in isolated axes, although at lower levels than in cotyledons. It accumulated during axis development in parallel with total protein, staying at about 1% of total protein content. When isolated immature axes were pulsed with (3)H-or (14)C-amino acids, they incorporated label into phaseolin, shown by precipitation with anti-phaseolin antibody. Isolated axes from mature seeds, however, did not synthesize detectable amounts of phaseolin. Immature axes cultured in vitro for a period of one to several days continued synthesizing phaseolin until the day prior to visible germination. Treatment of cultured axes with ABA increased the amount of precursor amino acids incorporated into protein, but had a small or no effect on the relative proportion of phaseolin synthesized. We conclude that P. vulgaris axes in culture continue to develop embryonically for a period of time which seems to be under intrinisc control by the axis. This contrasts with "precocious germanation", a pattern of embryo behavior seen in many other species. When such embryos are excised from seeds while immature and placed in culture, they switch promptly from embryo development into germination. If ABA or water stress is responsible for preventing precocious germination, it may be that a high level of ABA is maintained or synthesized internally by embryonic axes of Phaseolus, while in other embryos the maternal environment supplies ABA and/or causes water stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.