The experimental phase diagram of the CBrCl3+CBr4 system has been determined by means of X-ray powder diffraction and thermal analysis techniques from 200 K to the liquid state. Before melting, the two components have the same orientationally disordered (OD) face-centered cubic phase, and solid-liquid equilibrium is explained by simple isomorphism. The application of multiple crossed isopolymorphism formalism to the low-temperature solid-solid equilibria has enabled the inference of an OD rhombohedral metastable (at normal pressure) phase for CBr4. Experimental determination of the pressure-volume-temperature and construction of the pressure-temperature phase diagrams for CBr4 reveal the existence of a high-pressure phase, the rhombohedral symmetry of which is inferred by means of the thermodynamic assessment of the experimental phase diagram and demonstrated by means of high-pressure neutron diffraction measurements. The procedure used in this work confirms the connection between the appearance of metastable phases at normal pressure and their existence at high-pressure.
The temperature-composition phase diagram of the two-component system 1-Bradamantane and 1-Cl-adamantane has been determined by means of thermal analysis techniques and X-ray powder diffraction from the low-temperature phase to the liquid state. The crossed isopolymorphism formalism has been applied to the two-component system to infer the normal pressure properties of the orthorhombic metastable phase of 1-Cladamantane at normal pressure. The experimental pressure-temperature phase diagrams for the involved compounds are related to the two-phase equilibria determined at normal pressure and inferences about the monotropic behavior of the aforementioned orthorhombic phase are discussed.2
Relaxor ferroelectrics (RF) are outstanding materials owing to their extraordinary dielectric, electromechanical, and electro-optical properties. Although their massive applications, they remain to be one of the most puzzling solid-state materials because understanding their structural local order and relaxation dynamics is being a long-term challenge in materials science. The so-called Vogel-Fulcher-Tamman (VFT) relation has been extensively used to parameterize the relaxation dynamics in RF, although no microscopic description has been firmly established for such empirical relation. Here, we show that VFT equation is not always a proper approach for describing the dielectric relaxation in RF. Based on the Adam-Gibbs model and the Grüneisen temperature index, a more general equation to disentangle the relaxation kinetic is proposed. This approach allows to a new formulation for the configurational entropy leading to a local structural heterogeneity related order parameter for RF. A new pathway to disentangle relaxation phenomena in other relaxor ferroics could have opened.
The temperature dependence of the dielectric response of ordinary ferroelectric materials exhibits a frequency-independent anomalous peak as a manifestation of the ferroelectric to paraelectric phase transition. A second anomaly in the permittivity has been reported in different ferroelectric perovskite-type systems at low temperatures, often at cryogenic temperatures. This anomaly manifests as a frequency-dependent local maximum, which exhibits similar characteristics to that observed in relaxor ferroelectrics around their phase transition. The origin of this unexpected behavior is still controversial. In order to clarify this phenomenon, a model-free route solution is developed in this work. Our findings reveal the same critical linear pattern/glass-like freezing behavior previously observed for glass-forming systems. Contrary to current thought, our results suggest that a critical-like dynamic parameterization could provide a more appropriate solution than the conventional Vogel-Fulcher-Tammann equation. The implemented methodology may open a new pathway for analyzing relaxation phenomena in other functional materials like relaxor ferroics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.