Thilakarathna, R. M. M. S., Papadopoulos, Y. A., Rodd, A. V., Gunawardena, A. N., Fillmore, S. A. E. and Prithiviraj, B. 2012. Characterizing nitrogen transfer from red clover populations to companion bluegrass under field conditions. Can. J. Plant Sci. 92: 1163–1173. The ability of two red clover (Trifolium pratense L.) cultivars, AC Christie (diploid) and Tempus (tetraploid), to transfer fixed nitrogen (N) to companion bluegrass (Poa pratensis L.) was evaluated under field conditions. Plant samples were harvested three times during the 2009 growing season and N transfer from the red clover cultivars to bluegrass was determined using the natural abundance method for first harvest and 15N dilution techniques for second and third harvests. Soil and soil water samples were used to evaluate cultivar effects on soil N conditions. Both red clover cultivars derived more than 90% of their N from biological N fixation. The proportion of bluegrass N derived from interplant N transfer was 7, 11, and 26% for the first, second, and third harvests, respectively. Soil KCl extractable nitrate increased along the three cuts for Tempus in the 0 to 15-cm soil zone. Soil-water nitrate content increased periodically for AC Christie and remained constant for Tempus throughout the growing season. This result indicates that the two cultivars have distinctly different N cycling patterns.
Red clover cultivars, including diploid and tetraploid, are commonly used in legume‐based pasture mixtures. However, information on nodulation under different starter N regimens is limited. We hypothesized that there is genetic variability among different red clover cultivars for nodulation. A root hair deformation assay was conducted using three diploid (AC Christie, Tapani and CRS15) and three tetraploid (Tempus, CRS18 and CRS39) red clover cultivars by inoculating them with Rhizobium leguminosarum biovar trifolii. Nodulation and morphological characteristics of two selected red clover cultivars, AC Christie and Tempus, were determined under five starter N concentrations (0, 0.2, 0.4, 0.8 and 1.6 mg per plant). Inoculation with rhizobia increased root hair deformation with significant interaction across cultivars. Nodulation was delayed under high starter N concentrations, and genotypic differences were evident for days‐to‐nodule initiation. There was a positive quadratic response to starter N for AC Christie and a negative quadratic response for Tempus for nodulation. Tempus had more active nodules (92 %) than AC Christie (73 %). The genetic variability of red clover cultivars should be considered in N fixation studies and their response to availability of initial N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.