When the adaptive immune response is either immature or compromised, the innate immune system constitutes the principle defense against infection. Mannose-binding lectin (MBL) is a C-type serum lectin that plays a central role in the innate immune response. MBL binds microbial surface carbohydrates and mediates opsonophagocytosis directly and by activation of the lectin complement pathway. A wide variety of clinical isolates of bacteria, fungi, viruses, and parasites are bound by MBL. Three polymorphisms in the structural gene MBL2) and 2 promoter gene polymorphisms are commonly found that result in production of low serum levels of MBL. Clinical studies have shown that MBL insufficiency is associated with bacterial infection in patients with neutropenia and meningococcal sepsis. Low MBL levels appear to predispose persons to HIV infection. Numerous other potential infectious disease associations have been described. Therapy to supplement low MBL levels is being explored using either plasma-derived or recombinant material.
The mannose-binding lectin (MBL) pathway of complement activation is an important component of innate host defence. Numerous studies have described associations between the MBL genotype, MBL levels and disease susceptibility. However, genotyping and quantitative assays used in these studies have frequently been limited, and comprehensive data examining the interaction between structural and coding MBL genetic variants, MBL antigenic levels and MBL functional activity are lacking. Such data may be important for accurate planning and interpretation of studies of MBL and disease. This study has examined MBL in a cohort of 236 Australian blood donors. Five MBL promoter and coding single nucleotide polymorphisms were genotyped using polymerase chain reaction±sequence-specific priming (PCR±SSP). Plasma levels of MBL antigen were quantified using a double-antibody enzymelinked immunosorbent assay (ELISA), and functional MBL levels were quantified using a mannanbinding assay. Activation of the complement pathway by MBL was measured in a C4-deposition assay. Significant associations were found between both coding and promoter polymorphisms and MBL antigenic and functional levels. There was significant correlation between the results of MBL doubleantibody, mannan-binding and C4-deposition assays. Comprehensive MBL genotyping and functional MBL quantitation using mannan-binding and C4-deposition assays have the potential to be highly informative in MBL disease association studies.Dr R.
Mannose Binding Lectin (MBL) is a liver derived, circulating plasma protein that plays a pivotal role in innate immunity. MBL functions as a pathogen recognition molecule, opsonising organisms and initiating the complement cascade. MBL deficiency arising from mutations and promoter polymorphisms in the MBL2 gene is common and has been associated with risk, severity, and frequency of infection in a number of clinical settings. With MBL therapy on the horizon, the usefulness of replacement MBL therapy has been challenged by the notion, that as an acute phase protein, MBL levels may rise under stress to sufficient levels, in individuals who are usually deficient. This report demonstrates that in patients with sepsis and septic shock, the majority of patients do not display an MBL acute phase response: 41.4% of individuals maintained consistent MBL levels throughout hospital stay, 31.3% of individuals demonstrated a positive acute phase response, and a negative acute phase response was observed in 27.3% of individuals studied. Importantly, a positive acute phase response was generally observed in individuals with wild-type MBL2 genes. When a positive acute phase response was observed in individuals with coding mutation, these individuals demonstrated a normal MBL level on admission to hospital. Furthermore, no individual, regardless of genotype who was MBL deficient at admission was able to demonstrate a positive acute phase response into the normal MBL range. These findings indicate MBL demonstrates a variable acute phase response in the clinical setting of sepsis and septic shock.
Mannose-binding lectin (MBL) is an innate immune system pattern recognition molecule that kills a wide range of pathogens via the lectin complement pathway. MBL deficiency is associated with severe infection but the best measure of this deficiency is undecided. We investigated the influence of MBL functional deficiency on the development of sepsis in 195 adult patients, 166 of whom had bloodstream infection and 35 had pneumonia. Results were compared with 236 blood donor controls. MBL function (C4b deposition) and levels were measured by enzyme-linked immunosorbent assay. Using receiver-operator characteristics of MBL function in healthy controls, we identified a level of <0.2 U microL(-1) as a highly discriminative marker of low MBL2 genotypes. Median MBL function was lower in sepsis patients (0.18 U microL(-1)) than in controls (0.48 U microL(-1), P<0.001). MBL functional deficiency was more common in sepsis patients than controls (P<0.001). MBL functional deficient patients had significantly higher sequential organ failure assessment (SOFA) scores and higher MBL function and levels were found in patients with SOFA scores predictive of good outcome. Deficiency of MBL function appears to be associated with bloodstream infection and the development of septic shock. High MBL levels may be protective against severe sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.