The Cape mountain zebra (
Equus zebra zebra
) is a subspecies of mountain zebra endemic to South Africa. The Cape mountain zebra experienced near extinction in the early 1900’s and their numbers have since recovered to more than 4,800 individuals. However, there are still threats to their long-term persistence. A previous study reported that Cape mountain zebra had low genetic diversity in three relict populations and that urgent conservation management actions were needed to mitigate the risk of further loss. As these suggestions went largely unheeded, we undertook the present study, fifteen years later to determine the impact of management on genetic diversity in three key populations. Our results show a substantial loss of heterozygosity across the Cape mountain zebra populations studied. The most severe losses occurred at De Hoop Nature Reserve where expected heterozygosity reduced by 22.85% from 0.385 to 0.297. This is alarming, as the De Hoop Nature Reserve was previously identified as the most genetically diverse population owing to its founders originating from two of the three remaining relict stocks. Furthermore, we observed a complete loss of multiple private alleles from all populations, and a related reduction in genetic structure across the subspecies. These losses could lead to inbreeding depression and reduce the evolutionary potential of the Cape mountain zebra. We recommend immediate implementation of evidence-based genetic management and monitoring to prevent further losses, which could jeopardise the long term survival of Cape mountain zebra, especially in the face of habitat and climate change and emerging diseases.
Translocation of animals in fragmented habitats is an important means of dispersal and gene flow, however, the movement of animals has led to the spread of various diseases globally and wildlife are often the reservoirs of these diseases. Currently, Cape mountain zebra are translocated within South Africa as a management method for augmentation of isolated and fragmented populations. The movement of pathogens due to translocations in local regions have gone largely unchecked, particularly where there may still be isolated regions that can be negatively affected. Equine piroplasmosis is a tick-borne disease caused by
Theilaria equi
and/or
Babesia caballi
reported to occur in equids (Bhoora et al., 2010; Zweygarth et al., 2002). Here, the presence of
T. equi
and
B. caballi
was detected in 137 clinically healthy Cape mountain zebra from three South African reserves, Mountain Zebra National Park (MZNP), De Hoop Nature Reserve (DHNR) and Karoo National Park (KNP) using the multiplex EP real-time PCR (qPCR) assay. We observed 100% prevalence for
T. equi
and identified only one animal from MZNP with
B. caballi.
These results affirm that precautions should be taken prior to founding new populations of Cape mountain zebra and that potential farms and properties adjacent to prospective reserves should be screened for the presence of the organisms in order to mitigate risks of infection to domestic animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.