Thyrotropin releasing hormone (TRH) is released from the median eminence in response to neural stimuli evoked by different physiologic conditions (i.e. cold stress or suckling). The paraventricular nucleus (PVN) synthesizes pro-TRH and responds to negative thyroid hormone feedback. With the aim of determining if TRH biosynthesis is regulated in coordination with its release, we quantified TRH mRNA levels in PVN and in preoptic area-anterior hypothalamus (POA-AH) of rats sacrificed at different times during cold (0.5, 1,2 or 6 h) or suckling (15, 30 and 60 min) stimulus; TRH-like immunoreactivity (TRH-LI) in medial basal hypothalamus (MBH) and in POA-AH as well as corticosterone, triiodothyronine and prolactin levels in serum were also measured. Increases of serum hormones were observed in both paradigms as has been reported. MBH TRH-LI content decreased during suckling by 33% (p < 0.01) after 1 h, but did not change after cold stimulation. At short stimulation times, PVN TRH mRNA levels were 85% (30 min of suckling) and 97% (1 h in the cold) higher than their respective controls, decreasing to normal after 1-2 h. In the POA-AH, another TRH synthesizing region not involved in TRH hypophysiotropic function, a similar transient enhancement of TRH mRNA (146%) was observed only in cold stimulated animals after 30 min, consistent with its suggested role in thermogenesis. These results show a fast and transient response of TRH mRNA in PVN evoked by a neural stimulus.
The hypothalamic-pituitary thyroid (HPT) axis modulates energy homeostasis. Its activity decreases in conditions of negative energy balance but the effects of chronic exercise on the axis are controversial and unknown at hypothalamic level. Wistar male rats were exposed for up to 14 days to voluntary wheel running (WR), or pair-feeding (PF; 18% food restriction), or to repeated restraint (RR), a mild stressor. WR and RR diminished food intake; body weight gain decreased in the 3 experimental groups, but WAT mass and serum leptin more intensely in the WR group. WR, but not RR, produced a delayed inhibition of central markers of HPT axis activity. At day 14, in WR rats paraventricular nucleus-pro-TRH mRNA and serum TSH levels decreased, anterior pituitary TRH-receptor 1 mRNA levels increased, but serum thyroid hormone levels were unaltered, which is consistent with decreased secretion of TRH and clearance of thyroid hormones. A similar pattern was observed if WR animals were euthanized during their activity phase. In contrast, in PF animals the profound drop of HPT axis activity included decreased serum T3 levels and hepatic deiodinase 1 activity; these changes were correlated with an intense increase in serum corticosterone levels. WR effects on HPT axis were not associated with changes in the activity of the hypothalamic-pituitary adrenal axis, but correlated positively with serum leptin levels. These data demonstrate that voluntary WR adapts the status of the HPT axis, through pathways that are distinct from those observed during food restriction or repeated stress.
Norovirus remains the leading cause of foodborne illness, but there is no effective intervention to eliminate viral contaminants in fresh produce. Murine norovirus 1 (MNV-1) was inoculated in either 100 ml of liquid or 100 g of food. The inactivation of MNV-1 by electron-beam (e-beam), or high-energy electrons, at varying doses was measured in model systems (phosphate-buffered saline [PBS], Dulbecco's modified Eagle's medium [DMEM]) or from fresh foods (shredded cabbage, diced strawberries). E-beam was applied at a current of 1.5 mA, with doses of 0, 2, 4, 6, 8, 10, and 12 kGy. The surviving viral titer was determined by plaque assays in RAW 264.7 cells. In PBS and DMEM, e-beam at 0 and 2 kGy provided less than a 1-log reduction of virus. At doses of 4, 6, 8, 10, and 12 kGy, viral inactivation in PBS ranged from 2.37 to 6.40 log, while in DMEM inactivation ranged from 1.40 to 3.59 log. Irradiation of inoculated cabbage showed up to a 1-log reduction at 4 kGy, and less than a 3-log reduction at 12 kGy. On strawberries, less than a 1-log reduction occurred at doses up to 6 kGy, with a maximum reduction of 2.21 log at 12 kGy. These results suggest that a food matrix might provide increased survival for viruses. In foods, noroviruses are difficult to inactivate because of the protective effect of the food matrix, their small sizes, and their highly stable viral capsid.
The anthrax incidents in the United States in the fall of 2001 led to the use of electron beam (EB) processing to sanitize the mail for the U.S. Postal Service. This method of sanitization has prompted the need to further investigate the effect of EB irradiation on the destruction of Bacillus endospores. In this study, endospores of an anthrax surrogate, B. atrophaeus, were destroyed to demonstrate the efficacy of EB treatment of such biohazard spores. EB exposures were performed to determine (i) the inactivation of varying B. atrophaeus spore concentrations, (ii) a D 10 value (dose required to reduce a population by 1 log 10 ) for the B. atrophaeus spores, (iii) the effects of spore survival at the bottom of a standardized paper envelope stack, and (iv) the maximum temperature received by spores. A maximum temperature of 49.2°C was reached at a lethal dose of ϳ40 kGy, which is a significantly lower temperature than that needed to kill spores by thermal effects alone. A D 10 value of 1.53 kGy was determined for the species. A surface EB dose between 25 and 32 kGy produced the appropriate killing dose of EB between 11 and 16 kGy required to inactivate 8 log 10 spores, when spore samples were placed at the bottom of a 5.5-cm stack of envelopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.