Infrared reflection measurements of the half-filled two-dimensional organic conductors κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x were performed as a function of temperature (5 K < T < 300 K) and Br-substitution (x = 0%, 40%, 73%, 85%, and 90%) in order to study the metal-insulator transition. We can distinguish absorption processes due to itinerant and localized charge carriers. The broad mid-infrared absorption has two contributions: transitions between the two Hubbard bands and intradimer excitations from the charges localized on the (BEDT-TTF)2 dimer. Since the latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both electronic and vibrational features provides a tool to disentangle these contributions and to follow their temperature and electronic-correlations dependence. Calculations based on the cluster model support our interpretation.
The polarized optical conductivity data of two ~-phase charge-transfer salts of b~s-(ethylenedithio)-tetrathiafulvalene: ~-(BEDT-TTF)2(Hg(SCN)2Br] and ~-(BEDT-TTF)2 [Hg(SCN)C12), are, discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.