Type I diabetes mellitus is an autoimmune disease resulting from the interaction of genetic and environmental factors. A virus that was identified serologically as Kilham's rat virus (KRV) was isolated from a spontaneously diabetic rat and reproducibly induced diabetes in naive diabetes-resistant (DR) BB/Wor rats. Viral antigen was not identified in pancreatic islet cells, and beta cell cytolysis was not observed until after the appearance of lymphocytic insulitis. KRV did not induce diabetes in major histocompatibility complex-concordant and discordant non-BB rats and did not accelerate diabetes in diabetes-prone BB/Wor rats unless the rats had been reconstituted with DR spleen cells. This model of diabetes may provide insight regarding the interaction of viruses and autoimmune disease [corrected]
SUMMARYA plaque assay is described in which cytolytic activity of lymphocytic choriomeningitis virus (LCMV) is observed at low but not at high concentrations of infecting virus. Quantitation of the interference at high virus concentrations is detailed. Use of this assay during the course of the LCMV infection in L cells has shown that an interfering component is produced in abundance after the initial peak in infectivity in the medium has been reached. Thereafter the ability of the virus stock to form infective centres declines while the interference activity rises. Coinfection of L cells with high concentrations of one LCMV strain and low concentrations of any other tested strain prevents cellular destruction. When small virus inocula are used interference can be observed within single' bull's eye' plaques which exhibit concentric rings of lysed and intact cells. Simultaneous infection of L cells with an auto-interfering concentration of LCMV does not interfere significantly with plaque formation by mengo, vaccinia, and vesicular stomatitis viruses, but reduces four-to fivefold the number &plaques formed by the Amapari and Parana viruses related to LCVM. Interferon does not play a role in the system described. The physical and the immunological data on the interfering substance are consistent with the hypothesis that defective-interfering virus particles are present in LCMV tissue culture stocks.
Congenitally thymusless nude mice that lacked functional T cells were reconstituted with H-2-compatible or -incompatible thymus grafts taken from either fetal, newborn, or adult mice and transplanted under the kidney capsule or subcutaneously. Transplantation with unirradiated fetal (15--17 d) or newborn thymus grafts reconstituted the nude mice as assessed by their subsequent generation of virus-specific cytotoxic T cells in vivo or alloreactive T cells in vitro. The restriction specificity of T cells from homozygous mice was exclusively for the nude host H-2, as shown by direct cytolysis or by cold target competitive inhibition assays. irrespective of whether nude mice were reconstituted with H-2-compatible, semiallogeneic, or H-2-incompatible, unirradiated newborn or fetal thymus grafts (in order of decreasing efficiency of reconstitution). The restriction specificity for the nonhost H-2 of the thymus could not be demonstrated even after primary or secondary sensitization in an infected appropriate F1 environment. These nude mice reconstituted with fetal or newborn grafts were tolerant to the H-2 of the thymus donors. Nude mice transplanted with irradiated adult thymus grafts were reconstituted functionally with syngeneic or semisyngeneic but not with allogeneic thymus grafts. In homozygous nu/nu irradiated heterozygous recipients of F1 thymus grafts, the restriction specificity for the nonhost thymic H-2 could not be elicited upon adoptive sensitization in irradiated and infected F1 heterozygote stimulator mice; in fact, these chimeras' lymphocytes were not tolerant to the nonhost H-2. The discrepancy between the restorative capacity of unirradiated vs. irradiated thymus grafts suggests that precursors of T cells in nude mice can acquire restriction specificity and immunocompetence independently of a conventional, functioning H-2-compatible thymus if exposed to an allogeneic fetal or a newborn thymus that contains functioning thymocytes of donor type but not if reconstituted with an irradiated adult allogeneic thymus.
The expression of viral antigens on the surfaces of lymphocytic choriomeningitis virus (LCMV)-infected L-929 cells peaked 2-4 days postinfection and thereafter precipitously declined. Little or no viral antigen was expressed on the plasma membrane surfaces of persistently infected cells, but LCMV antigens were clearly present in the cytoplasms of most of those cells. Cells early after acute infection (days 2-4) were lysed by both virus-specific antibody and complement (C) and immune T lymphocytes. To the contrary, antibody and C did not kill persistently infected cells, but T lymphocytes did kill such cells although at a lower efficiency than acutely infected cells. The expression of viral antigens on the surfaces of infected cells was regulated by the virus- cell interaction in the absence of immune reagents and was closely associated with defective interfering (DI) LCMV interference. DI LCMV, per se, blocked the synthesis and cell surface expression of LCMV antigens, and DI LCMV generation immediately preceded a precipitous reduction in cell surface antigenicity during the acute infection. Persistently infected cells produced DI LCMV but no detectable S LCMV. Peritoneal cells isolated from mice persistently infected with LCMV resembled cultured persistently infected cells in their reduced expression of cell surface antigens and their resistance to LCMV superinfection. It is proposed that DI virus-mediated interference with viral protein synthesis may allow cells to escape immune surveillance during persistent infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.