Aeroelastic systems with freeplay nonlinearity can exhibit a wide variety of qualitatively different dynamical responses such as limit cycle oscillations and chaos in the pre-flutter regimes. Consequently, the bifurcation scenario in an aeroelastic system with freeplay nonlinearity under uniform flows have received considerable attention in the literature. However, in reality flows are far from deterministic and often possess a small temporal random fluctuations about a mean value. Input flow fluctuations have the potential to alter the stability and give rise to atypical routes to flutter. Indeed, recent studies have shown that under flow fluctuations the aeroelastic systems loses its stability via a regime of oscillations called intermittency. Further, it is observed that the presence of cubic hardening nonlinearity and input flow fluctuations with predominantly long time scales can give rise to “on-off” type intermittency. This dynamical behaviour is attributed to type of nonlinearity and relatively short time scale for the system to stay and exhibit distinct dynamics. Extending the mechanism of intermittency route to flutter in aeroelastic systems with other prominent types of nonlinearities, such as, freeplay have however, received minimal attention in the literature. The present study devotes itself to investigate the response dynamics of an airfoil with freeplay nonlinearity subjected to long time scale input flow fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.