Lumpy skin disease (LSD) is an economically important disease caused by LSD virus (LSDV), a Capripoxvirus, characterized by fever and circumscribed skin lesions. It is suspected to be transmitted mechanically by biting flies. To assess the vector potential of Amblyomma hebraeum in transmission of LSDV, mechanical/intrastadial and transstadial modes of transmission of the virus by this tick species were investigated. Two cattle were artificially infected as sources (donors) of infection to ticks. Ticks were infected as either nymphs or adults. Male A. hebraeum ticks were partially fed on donor animals and transferred to recipient animals to test for mechanical/intrastadial transmission. Nymphal A. hebraeum were fed to repletion on donor animals. The emergent adult ticks were placed on recipient animals to test for transstadial transmission of the virus. Successful transmission of LSDV infection was determined in recipient animals by monitoring development of clinical signs, testing of blood for the presence of LSDV by real-time PCR, virus isolation and the serum neutralization test. This report provides further evidence of mechanical/intrastadial and, for the first time, transstadial transmission of LSDV by A. hebraeum. These findings implicate A. hebraeum as a possible maintenance host in the epidemiology of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.