The present investigation reports for the first time a dramatic decrease in the sintering temperature of elemental W from the conventional temperature of ജ2500°C to the modest temperature range of 1700-1790°C by making the W powder nanostructured through high-energy mechanical milling (MM) prior to sintering. The crystallite size of the initial W powder charge with a particle size of 3-4 m could be brought down to 8 nm by MM for 5 h in WC grinding media. Further milling resulted in a high level of WC contamination, which apparently was due to work hardening and the grain refinement of W. A sintered density as high as 97.4% was achieved by sintering cold, isostatically pressed nanocrystalline (8 nm) W powder at 1790°C for 900 min. The microstructure of the sintered rods showed the presence of deformation bands, but no cracks, within a large number of W grains. The mechanical properties, when compared with the hardness and elastic modulus, of the sintered nano-W specimen were somewhat superior to those reported for the conventional sintered W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.